Cargando…
Identification of a novel circ_0018289/miR-183-5p/TMED5 regulatory network in cervical cancer development
BACKGROUND: Circular RNAs (circRNAs) are increasingly implicated in regulating human carcinogenesis. Previous work showed the oncogenic activity of circ_0018289 in cervical cancer. However, the molecular basis underlying the modulation of circ_0018289 in cervical carcinogenesis is still not fully un...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371901/ https://www.ncbi.nlm.nih.gov/pubmed/34404391 http://dx.doi.org/10.1186/s12957-021-02350-y |
Sumario: | BACKGROUND: Circular RNAs (circRNAs) are increasingly implicated in regulating human carcinogenesis. Previous work showed the oncogenic activity of circ_0018289 in cervical cancer. However, the molecular basis underlying the modulation of circ_0018289 in cervical carcinogenesis is still not fully understood. METHODS: The levels of circ_0018289, microRNA (miR)-183-5p, and transmembrane p24 trafficking protein 5 (TMED5) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay. Ribonuclease (RNase) R and subcellular localization assays were used to characterize circ_0018289. Cell proliferation was detected by the Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (Edu) assays. Cell apoptosis and tube formation were assessed by flow cytometry and tube formation assays, respectively. A dual-luciferase reporter assay was performed to confirm the direct relationship between miR-183-5p and circ_0018289 or TMED5. The role of circ_0018289 in tumor growth was gauged by mouse xenograft experiments. RESULTS: Circ_0018289 was overexpressed in cervical cancer tissues and cells. Circ_0018289 silencing impeded cell proliferation, enhanced cell apoptosis, and suppressed angiogenesis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ_0018289 targeted and regulated miR-183-5p by binding to miR-183-5p, and circ_0018289 regulated cervical cancer development and angiogenesis partially through miR-183-5p. Moreover, TMED5 was directly targeted and inhibited by miR-183-5p through the perfect complementary sites in TMED5 3′UTR, and TMED5 knockdown phenocopied miR-183-5p overexpression in suppressing cervical cancer development and angiogenesis. Furthermore, circ_0018289 induced TMED5 expression by competitively binding to shared miR-183-5p. CONCLUSION: Our observations identified the circ_0018289/miR-183-5p/TMED5 regulatory network as a novel molecular basis underlying the modulation of cervical carcinogenesis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12957-021-02350-y. |
---|