Cargando…

CDK4 has the ability to regulate Aurora B and Cenpp expression in mouse keratinocytes

Cyclin-dependent kinase 4 (CDK4) is a critical molecule that regulates key aspects of cell proliferation through phosphorylation of the retinoblastoma (Rb) family of proteins. In the last few years, it has been suggested that CDK4 plays alternative roles in cell proliferation and tumorigenesis. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Sung Hyun, Rodriguez, Liliana R.L., Majumdar, Rima, De Marval, Paula L. Miliani, Rodriguez-Puebla, Marcelo L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371965/
https://www.ncbi.nlm.nih.gov/pubmed/34429772
http://dx.doi.org/10.3892/ol.2021.12993
Descripción
Sumario:Cyclin-dependent kinase 4 (CDK4) is a critical molecule that regulates key aspects of cell proliferation through phosphorylation of the retinoblastoma (Rb) family of proteins. In the last few years, it has been suggested that CDK4 plays alternative roles in cell proliferation and tumorigenesis. The main aim of the present study was to define a novel CDK4 function as a transcriptional regulator of genes involved in chromosome segregation, contributing to the G(2)/M phase transition. Herein, chromatin-immunoprecipitation reverse transcription-quantitative PCR assays were performed to demonstrate that CDK4 could occupy the promoter region of genes associated with chromosomal segregation, such as Aurora-B (Aurkb) and Centromere Protein P (CENP-P). Moreover, gain- and loss-of-function experiments showed that CDK4 participated in the transcriptional regulation of Aurkb and CENP-P. The finding that Aurkb may have a crucial role in chromosome bi-orientation and the spindle assembly checkpoint, and that CENP-P could be required for proper kinetochore function suggests that dysregulation of CDK4 expression induces chromosomal instability and, in some cases, cancer development.