Cargando…
Comparison of machine learning techniques to handle imbalanced COVID-19 CBC datasets
The Coronavirus pandemic caused by the novel SARS-CoV-2 has significantly impacted human health and the economy, especially in countries struggling with financial resources for medical testing and treatment, such as Brazil’s case, the third most affected country by the pandemic. In this scenario, ma...
Autores principales: | Dorn, Marcio, Grisci, Bruno Iochins, Narloch, Pedro Henrique, Feltes, Bruno César, Avila, Eduardo, Kahmann, Alessandro, Alho, Clarice Sampaio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372002/ https://www.ncbi.nlm.nih.gov/pubmed/34458574 http://dx.doi.org/10.7717/peerj-cs.670 |
Ejemplares similares
-
Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios
por: Avila, Eduardo, et al.
Publicado: (2020) -
An Asymmetric Contrastive Loss for Handling Imbalanced Datasets
por: Vito, Valentino, et al.
Publicado: (2022) -
Cost-sensitive learning strategies for high-dimensional and imbalanced data: a comparative study
por: Pes, Barbara, et al.
Publicado: (2021) -
Gene Expression Analysis Platform (GEAP): A highly customizable,
fast, versatile and ready-to-use microarray analysis platform
por: Nunes, Itamar José Guimarães, et al.
Publicado: (2021) -
A novel multi-class imbalanced EEG signals classification based on the adaptive synthetic sampling (ADASYN) approach
por: Alhudhaif, Adi
Publicado: (2021)