Cargando…
Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site
Globally, human activities have resulted in rapid environmental changes that present unique challenges for wildlife. However, investigations of local adaptation in response to simultaneous exposure to multiple anthropogenic selection pressures are rare and often generate conflicting results. We used...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372081/ https://www.ncbi.nlm.nih.gov/pubmed/34429747 http://dx.doi.org/10.1111/eva.13256 |
_version_ | 1783739758908801024 |
---|---|
author | Flynn, R. Wesley Welch, Allison M. Lance, Stacey L. |
author_facet | Flynn, R. Wesley Welch, Allison M. Lance, Stacey L. |
author_sort | Flynn, R. Wesley |
collection | PubMed |
description | Globally, human activities have resulted in rapid environmental changes that present unique challenges for wildlife. However, investigations of local adaptation in response to simultaneous exposure to multiple anthropogenic selection pressures are rare and often generate conflicting results. We used an in situ reciprocal transplant design within a quantitative genetic framework to examine how adaptive evolution and phenotypic plasticity contribute to the persistence of an amphibian population inhabiting an environment characterized by high levels of multiple toxic trace elements. We found evidence of phenotypic divergence that is largely consistent with local adaptation to an environment contaminated with multiple chemical stressors, tied to potential trade‐offs in the absence of contaminants. Specifically, the population derived from the contaminated environment had a reduced risk of mortality and greater larval growth and in the contaminated environment, relative to offspring from the naïve population. Further, while survival in the uncontaminated environment was not compromised in offspring from the contaminant‐exposed population, they did show delayed development and reduced growth rates over larval development, relative to the naïve population. We found no evidence of reduced additive genetic variation in the contaminant‐exposed population, suggesting long‐term selection in a novel environment has not reduced the evolutionary potential of that population. We also saw little evidence that past selection in the ASH environment had reduced trait plasticity in the resident population. Maternal effects were prominent in early development, but we did not detect any trends suggesting these effects were associated with the maternal transfer of toxic trace elements. Our results demonstrate the potential for adaptation to multiple contaminants in a wild amphibian population, which may have facilitated long‐term persistence in a heavily impacted environment. |
format | Online Article Text |
id | pubmed-8372081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83720812021-08-23 Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site Flynn, R. Wesley Welch, Allison M. Lance, Stacey L. Evol Appl Original Articles Globally, human activities have resulted in rapid environmental changes that present unique challenges for wildlife. However, investigations of local adaptation in response to simultaneous exposure to multiple anthropogenic selection pressures are rare and often generate conflicting results. We used an in situ reciprocal transplant design within a quantitative genetic framework to examine how adaptive evolution and phenotypic plasticity contribute to the persistence of an amphibian population inhabiting an environment characterized by high levels of multiple toxic trace elements. We found evidence of phenotypic divergence that is largely consistent with local adaptation to an environment contaminated with multiple chemical stressors, tied to potential trade‐offs in the absence of contaminants. Specifically, the population derived from the contaminated environment had a reduced risk of mortality and greater larval growth and in the contaminated environment, relative to offspring from the naïve population. Further, while survival in the uncontaminated environment was not compromised in offspring from the contaminant‐exposed population, they did show delayed development and reduced growth rates over larval development, relative to the naïve population. We found no evidence of reduced additive genetic variation in the contaminant‐exposed population, suggesting long‐term selection in a novel environment has not reduced the evolutionary potential of that population. We also saw little evidence that past selection in the ASH environment had reduced trait plasticity in the resident population. Maternal effects were prominent in early development, but we did not detect any trends suggesting these effects were associated with the maternal transfer of toxic trace elements. Our results demonstrate the potential for adaptation to multiple contaminants in a wild amphibian population, which may have facilitated long‐term persistence in a heavily impacted environment. John Wiley and Sons Inc. 2021-06-09 /pmc/articles/PMC8372081/ /pubmed/34429747 http://dx.doi.org/10.1111/eva.13256 Text en © 2021 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Flynn, R. Wesley Welch, Allison M. Lance, Stacey L. Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
title | Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
title_full | Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
title_fullStr | Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
title_full_unstemmed | Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
title_short | Divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
title_sort | divergence in heritable life history traits suggests potential for local adaptation and trade‐offs associated with a coal ash disposal site |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372081/ https://www.ncbi.nlm.nih.gov/pubmed/34429747 http://dx.doi.org/10.1111/eva.13256 |
work_keys_str_mv | AT flynnrwesley divergenceinheritablelifehistorytraitssuggestspotentialforlocaladaptationandtradeoffsassociatedwithacoalashdisposalsite AT welchallisonm divergenceinheritablelifehistorytraitssuggestspotentialforlocaladaptationandtradeoffsassociatedwithacoalashdisposalsite AT lancestaceyl divergenceinheritablelifehistorytraitssuggestspotentialforlocaladaptationandtradeoffsassociatedwithacoalashdisposalsite |