Cargando…

mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines

Machine learning (ML) for classification and prediction based on a set of features is used to make decisions in healthcare, economics, criminal justice and more. However, implementing an ML pipeline including preprocessing, model selection, and evaluation can be time-consuming, confusing, and diffic...

Descripción completa

Detalles Bibliográficos
Autores principales: Topçuoğlu, Begüm D., Lapp, Zena, Sovacool, Kelly L., Snitkin, Evan, Wiens, Jenna, Schloss, Patrick D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372219/
https://www.ncbi.nlm.nih.gov/pubmed/34414351
http://dx.doi.org/10.21105/joss.03073
_version_ 1783739768127881216
author Topçuoğlu, Begüm D.
Lapp, Zena
Sovacool, Kelly L.
Snitkin, Evan
Wiens, Jenna
Schloss, Patrick D.
author_facet Topçuoğlu, Begüm D.
Lapp, Zena
Sovacool, Kelly L.
Snitkin, Evan
Wiens, Jenna
Schloss, Patrick D.
author_sort Topçuoğlu, Begüm D.
collection PubMed
description Machine learning (ML) for classification and prediction based on a set of features is used to make decisions in healthcare, economics, criminal justice and more. However, implementing an ML pipeline including preprocessing, model selection, and evaluation can be time-consuming, confusing, and difficult. Here, we present mikropml (prononced “meek-ROPE em el”), an easy-to-use R package that implements ML pipelines using regression, support vector machines, decision trees, random forest, or gradient-boosted trees. The package is available on GitHub, CRAN, and conda.
format Online
Article
Text
id pubmed-8372219
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-83722192021-08-18 mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines Topçuoğlu, Begüm D. Lapp, Zena Sovacool, Kelly L. Snitkin, Evan Wiens, Jenna Schloss, Patrick D. J Open Source Softw Article Machine learning (ML) for classification and prediction based on a set of features is used to make decisions in healthcare, economics, criminal justice and more. However, implementing an ML pipeline including preprocessing, model selection, and evaluation can be time-consuming, confusing, and difficult. Here, we present mikropml (prononced “meek-ROPE em el”), an easy-to-use R package that implements ML pipelines using regression, support vector machines, decision trees, random forest, or gradient-boosted trees. The package is available on GitHub, CRAN, and conda. 2021-05-14 2021 /pmc/articles/PMC8372219/ /pubmed/34414351 http://dx.doi.org/10.21105/joss.03073 Text en https://creativecommons.org/licenses/by/4.0/Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Topçuoğlu, Begüm D.
Lapp, Zena
Sovacool, Kelly L.
Snitkin, Evan
Wiens, Jenna
Schloss, Patrick D.
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
title mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
title_full mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
title_fullStr mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
title_full_unstemmed mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
title_short mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
title_sort mikropml: user-friendly r package for supervised machine learning pipelines
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372219/
https://www.ncbi.nlm.nih.gov/pubmed/34414351
http://dx.doi.org/10.21105/joss.03073
work_keys_str_mv AT topcuoglubegumd mikropmluserfriendlyrpackageforsupervisedmachinelearningpipelines
AT lappzena mikropmluserfriendlyrpackageforsupervisedmachinelearningpipelines
AT sovacoolkellyl mikropmluserfriendlyrpackageforsupervisedmachinelearningpipelines
AT snitkinevan mikropmluserfriendlyrpackageforsupervisedmachinelearningpipelines
AT wiensjenna mikropmluserfriendlyrpackageforsupervisedmachinelearningpipelines
AT schlosspatrickd mikropmluserfriendlyrpackageforsupervisedmachinelearningpipelines