Cargando…
Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules
Light-absorbing organic molecules are useful components in photocatalysts, but it is difficult to formulate reliable structure–property design rules. More than 100 million unique chemical compounds are documented in the PubChem database, and a significant sub-set of these are π-conjugated, light-abs...
Autores principales: | Li, Xiaobo, Maffettone, Phillip M., Che, Yu, Liu, Tao, Chen, Linjiang, Cooper, Andrew I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372320/ https://www.ncbi.nlm.nih.gov/pubmed/34476057 http://dx.doi.org/10.1039/d1sc02150h |
Ejemplares similares
-
A stable covalent organic framework for photocatalytic carbon dioxide reduction
por: Fu, Zhiwei, et al.
Publicado: (2019) -
Unsupervised machine learning discovers classes in aluminium alloys
por: Bhat, Ninad, et al.
Publicado: (2023) -
Combined first-principles calculations and experimental study on the photocatalytic mechanism of natural dolomite
por: Hou, Xiaomin, et al.
Publicado: (2021) -
Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review
por: Geldasa, Fikadu Takele, et al.
Publicado: (2023) -
Predicting the emission wavelength of organic molecules using a combinatorial QSAR and machine learning approach
por: Ye, Zong-Rong, et al.
Publicado: (2020)