Cargando…

Epoc group: transformable protecting group with gold(iii)-catalyzed fluorene formation

This study presents the novel concept of a transformable protecting group, which changes its properties through structural transformation. Based on this concept, we developed a 2-(2-ethynylphenyl)-2-(5-methylfuran-2-yl)-ethoxycarbonyl (Epoc) group. The Epoc group was transformed into an Fmoc-like st...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamamoto, Tomoya, Chang, Tsung-Che, Tanaka, Katsunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372321/
https://www.ncbi.nlm.nih.gov/pubmed/34476055
http://dx.doi.org/10.1039/d1sc03125b
Descripción
Sumario:This study presents the novel concept of a transformable protecting group, which changes its properties through structural transformation. Based on this concept, we developed a 2-(2-ethynylphenyl)-2-(5-methylfuran-2-yl)-ethoxycarbonyl (Epoc) group. The Epoc group was transformed into an Fmoc-like structure with gold(iii)-catalyzed fluorene formation and was removable under Fmoc-like mild basic conditions post-transformation even though it was originally stable under strongly basic conditions. As an application for organic synthesis, the Epoc group provides the novel orthogonality of gold(iii)-labile protecting groups in solid-phase peptide synthesis. In addition, the high turnover number of fluorene formation in aqueous media is suggestive of the applicability of the Epoc group to biological systems.