Cargando…
Predicting chemical shifts with graph neural networks
Inferring molecular structure from Nuclear Magnetic Resonance (NMR) measurements requires an accurate forward model that can predict chemical shifts from 3D structure. Current forward models are limited to specific molecules like proteins and state-of-the-art models are not differentiable. Thus they...
Autores principales: | Yang, Ziyue, Chakraborty, Maghesree, White, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372537/ https://www.ncbi.nlm.nih.gov/pubmed/34476061 http://dx.doi.org/10.1039/d1sc01895g |
Ejemplares similares
-
Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2020) -
Correction: Graph neural network based coarse-grained mapping prediction
por: Li, Zhiheng, et al.
Publicado: (2021) -
A graph-convolutional neural network model for the prediction of chemical reactivity
por: Coley, Connor W., et al.
Publicado: (2018) -
Real-time prediction of (1)H and (13)C chemical shifts with DFT accuracy using a 3D graph neural network
por: Guan, Yanfei, et al.
Publicado: (2021) -
Rapid prediction of protein natural frequencies using graph neural networks
por: Guo, Kai, et al.
Publicado: (2022)