Cargando…
A transferable active-learning strategy for reactive molecular force fields
Predictive molecular simulations require fast, accurate and reactive interatomic potentials. Machine learning offers a promising approach to construct such potentials by fitting energies and forces to high-level quantum-mechanical data, but doing so typically requires considerable human intervention...
Autores principales: | Young, Tom A., Johnston-Wood, Tristan, Deringer, Volker L., Duarte, Fernanda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372546/ https://www.ncbi.nlm.nih.gov/pubmed/34476072 http://dx.doi.org/10.1039/d1sc01825f |
Ejemplares similares
-
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
por: Deringer, Volker L., et al.
Publicado: (2020) -
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
por: El-Machachi, Zakariya, et al.
Publicado: (2022) -
Iterative training set refinement enables reactive molecular dynamics via machine learned forces
por: Chen, Lei, et al.
Publicado: (2020) -
Hybrid classical/machine-learning force fields for the accurate description of molecular condensed-phase systems
por: Thürlemann, Moritz, et al.
Publicado: (2023) -
Reactive force fields for modeling oxidative degradation of organic matter in geological formations
por: Hur, Jaewoong, et al.
Publicado: (2021)