Cargando…
Dynamic graph convolutional networks with attention mechanism for rumor detection on social media
Social media has become an ideal platform for the propagation of rumors, fake news, and misinformation. Rumors on social media not only mislead online users but also affect the real world immensely. Thus, detecting the rumors and preventing their spread became an essential task. Some of the recent d...
Autores principales: | Choi, Jiho, Ko, Taewook, Choi, Younhyuk, Byun, Hyungho, Kim, Chong-kwon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372894/ https://www.ncbi.nlm.nih.gov/pubmed/34407111 http://dx.doi.org/10.1371/journal.pone.0256039 |
Ejemplares similares
-
KAGN:knowledge-powered attention and graph convolutional networks for social media rumor detection
por: Cui, Wei, et al.
Publicado: (2023) -
Rumor detection driven by graph attention capsule network on dynamic propagation structures
por: Yang, Peng, et al.
Publicado: (2022) -
Rumor Propagation is Amplified by Echo Chambers in Social Media
por: Choi, Daejin, et al.
Publicado: (2020) -
Rumor detection based on propagation graph neural network with attention mechanism
por: Wu, Zhiyuan, et al.
Publicado: (2020) -
Rumor detection on social media using hierarchically aggregated feature via graph neural networks
por: Xu, Shouzhi, et al.
Publicado: (2022)