Cargando…
Sexual, allometric and forest cover effects on giant anteaters’ movement ecology
Knowing the influence of intrinsic and environmental traits on animals’ movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses fo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372905/ https://www.ncbi.nlm.nih.gov/pubmed/34407068 http://dx.doi.org/10.1371/journal.pone.0253345 |
_version_ | 1783739851665833984 |
---|---|
author | Giroux, Aline Ortega, Zaida Oliveira-Santos, Luiz Gustavo Rodrigues Attias, Nina Bertassoni, Alessandra Desbiez, Arnaud Léonard Jean |
author_facet | Giroux, Aline Ortega, Zaida Oliveira-Santos, Luiz Gustavo Rodrigues Attias, Nina Bertassoni, Alessandra Desbiez, Arnaud Léonard Jean |
author_sort | Giroux, Aline |
collection | PubMed |
description | Knowing the influence of intrinsic and environmental traits on animals’ movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses forests as thermal shelters. Here, we aim to provide reliable estimates of giant anteaters’ movement patterns and home range size, as well as untangle the role of intrinsic and environmental drivers on their movement. We GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time movement model to estimate their movement patterns (described by home range crossing time, daily distance moved and directionality), and provide an autocorrelated kernel density estimate of home range size. Then, we used mixed structural equations to integratively model the effects of sex, body mass and proportion of forest cover on movement patterns and home range size, considering the complex net of interactions between these variables. Male giant anteaters presented more intensive space use and larger home range than females with similar body mass, as it is expected in polygynous social mating systems. Males and females increased home range size with increasing body mass, but the allometric scaling of intensity of space use was negative for males and positive for females, indicating different strategies in search for resources. With decreasing proportion of forest cover inside their home ranges, and, consequently, decreasing thermal quality of their habitat, giant anteaters increased home range size, possibly to maximize the chances of accessing thermal shelters. As frequency and intensity of extreme weather events and deforestation are increasing, effective management efforts need to consider the role of forests as an important thermal resource driving spatial requirements of this species. We highlight that both intrinsic and environmental drivers of animal movement should be integrated to better guide management strategies. |
format | Online Article Text |
id | pubmed-8372905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-83729052021-08-19 Sexual, allometric and forest cover effects on giant anteaters’ movement ecology Giroux, Aline Ortega, Zaida Oliveira-Santos, Luiz Gustavo Rodrigues Attias, Nina Bertassoni, Alessandra Desbiez, Arnaud Léonard Jean PLoS One Research Article Knowing the influence of intrinsic and environmental traits on animals’ movement is a central interest of ecology and can aid to enhance management decisions. The giant anteater (Myrmecophaga tridactyla) is a vulnerable mammal that presents low capacity for physiological thermoregulation and uses forests as thermal shelters. Here, we aim to provide reliable estimates of giant anteaters’ movement patterns and home range size, as well as untangle the role of intrinsic and environmental drivers on their movement. We GPS-tracked 19 giant anteaters in Brazilian savannah. We used a continuous-time movement model to estimate their movement patterns (described by home range crossing time, daily distance moved and directionality), and provide an autocorrelated kernel density estimate of home range size. Then, we used mixed structural equations to integratively model the effects of sex, body mass and proportion of forest cover on movement patterns and home range size, considering the complex net of interactions between these variables. Male giant anteaters presented more intensive space use and larger home range than females with similar body mass, as it is expected in polygynous social mating systems. Males and females increased home range size with increasing body mass, but the allometric scaling of intensity of space use was negative for males and positive for females, indicating different strategies in search for resources. With decreasing proportion of forest cover inside their home ranges, and, consequently, decreasing thermal quality of their habitat, giant anteaters increased home range size, possibly to maximize the chances of accessing thermal shelters. As frequency and intensity of extreme weather events and deforestation are increasing, effective management efforts need to consider the role of forests as an important thermal resource driving spatial requirements of this species. We highlight that both intrinsic and environmental drivers of animal movement should be integrated to better guide management strategies. Public Library of Science 2021-08-18 /pmc/articles/PMC8372905/ /pubmed/34407068 http://dx.doi.org/10.1371/journal.pone.0253345 Text en © 2021 Giroux et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Giroux, Aline Ortega, Zaida Oliveira-Santos, Luiz Gustavo Rodrigues Attias, Nina Bertassoni, Alessandra Desbiez, Arnaud Léonard Jean Sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
title | Sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
title_full | Sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
title_fullStr | Sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
title_full_unstemmed | Sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
title_short | Sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
title_sort | sexual, allometric and forest cover effects on giant anteaters’ movement ecology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372905/ https://www.ncbi.nlm.nih.gov/pubmed/34407068 http://dx.doi.org/10.1371/journal.pone.0253345 |
work_keys_str_mv | AT girouxaline sexualallometricandforestcovereffectsongiantanteatersmovementecology AT ortegazaida sexualallometricandforestcovereffectsongiantanteatersmovementecology AT oliveirasantosluizgustavorodrigues sexualallometricandforestcovereffectsongiantanteatersmovementecology AT attiasnina sexualallometricandforestcovereffectsongiantanteatersmovementecology AT bertassonialessandra sexualallometricandforestcovereffectsongiantanteatersmovementecology AT desbiezarnaudleonardjean sexualallometricandforestcovereffectsongiantanteatersmovementecology |