Cargando…
SiGMoiD: A super-statistical generative model for binary data
In modern computational biology, there is great interest in building probabilistic models to describe collections of a large number of co-varying binary variables. However, current approaches to build generative models rely on modelers’ identification of constraints and are computationally expensive...
Autores principales: | Zhao, Xiaochuan, Plata, Germán, Dixit, Purushottam D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372922/ https://www.ncbi.nlm.nih.gov/pubmed/34358223 http://dx.doi.org/10.1371/journal.pcbi.1009275 |
Ejemplares similares
-
Super-Exponential Growth in Models of a Binary String World
por: Villani, Marco, et al.
Publicado: (2023) -
Statistical description of strongly damped binary yields from the $^{28}Si + ^{16}O$ reaction
por: Szanto de Toledo, A, et al.
Publicado: (1997) -
Statistics super review
por: Research and Education Association
Publicado: (2000) -
Statistics super review
por: REA, Editors of
Publicado: (2014) -
A Consolidation Curve Reproduction Based on Sigmoid Model: Evaluation and Statistical Assessment
por: Olek, Bartłomiej Szczepan
Publicado: (2022)