Cargando…
Machine learning for manually-measured water quality prediction in fish farming
Monitoring variables such as dissolved oxygen, pH, and pond temperature is a key aspect of high-quality fish farming. Machine learning (ML) techniques have been proposed to model the dynamics of such variables to improve the fish farmer’s decision-making. Most of the research on ML in aquaculture ha...
Autores principales: | Zambrano, Andres Felipe, Giraldo, Luis Felipe, Quimbayo, Julian, Medina, Brayan, Castillo, Eduardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372934/ https://www.ncbi.nlm.nih.gov/pubmed/34407149 http://dx.doi.org/10.1371/journal.pone.0256380 |
Ejemplares similares
-
Open-source low-cost design of a buoy for remote water quality monitoring in fish farming
por: Medina, Juan D., et al.
Publicado: (2022) -
IoT-Based Fish Farm Water Quality Monitoring System
por: Chen, Chiung-Hsing, et al.
Publicado: (2022) -
Data Quality Monitoring with Machine Learning at CMS
por: Lacera Otalora, Hector Felipe
Publicado: (2016) -
Monitoring of Mycotoxigenic Fungi in Fish Farm Water and Fumonisins in Feeds for Farmed Colossoma macropomum
por: Sousa Terada-Nascimento, Juliana, et al.
Publicado: (2023) -
Streptococcus agalactiae Sequence Type 283 in Farmed Fish, Brazil
por: Leal, Carlos A.G., et al.
Publicado: (2019)