Cargando…
Moore’s Law revisited through Intel chip density
Gordon Moore famously observed that the number of transistors in state-of-the-art integrated circuits (units per chip) increases exponentially, doubling every 12–24 months. Analysts have debated whether simple exponential growth describes the dynamics of computer processor evolution. We note that th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372957/ https://www.ncbi.nlm.nih.gov/pubmed/34407116 http://dx.doi.org/10.1371/journal.pone.0256245 |
_version_ | 1783739863122575360 |
---|---|
author | Burg, David Ausubel, Jesse H. |
author_facet | Burg, David Ausubel, Jesse H. |
author_sort | Burg, David |
collection | PubMed |
description | Gordon Moore famously observed that the number of transistors in state-of-the-art integrated circuits (units per chip) increases exponentially, doubling every 12–24 months. Analysts have debated whether simple exponential growth describes the dynamics of computer processor evolution. We note that the increase encompasses two related phenomena, integration of larger numbers of transistors and transistor miniaturization. Growth in the number of transistors per unit area, or chip density, allows examination of the evolution with a single measure. Density of Intel processors between 1959 and 2013 are consistent with a biphasic sigmoidal curve with characteristic times of 9.5 years. During each stage, transistor density increased at least tenfold within approximately six years, followed by at least three years with negligible growth rates. The six waves of transistor density increase account for and give insight into the underlying processes driving advances in processor manufacturing and point to future limits that might be overcome. |
format | Online Article Text |
id | pubmed-8372957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-83729572021-08-19 Moore’s Law revisited through Intel chip density Burg, David Ausubel, Jesse H. PLoS One Research Article Gordon Moore famously observed that the number of transistors in state-of-the-art integrated circuits (units per chip) increases exponentially, doubling every 12–24 months. Analysts have debated whether simple exponential growth describes the dynamics of computer processor evolution. We note that the increase encompasses two related phenomena, integration of larger numbers of transistors and transistor miniaturization. Growth in the number of transistors per unit area, or chip density, allows examination of the evolution with a single measure. Density of Intel processors between 1959 and 2013 are consistent with a biphasic sigmoidal curve with characteristic times of 9.5 years. During each stage, transistor density increased at least tenfold within approximately six years, followed by at least three years with negligible growth rates. The six waves of transistor density increase account for and give insight into the underlying processes driving advances in processor manufacturing and point to future limits that might be overcome. Public Library of Science 2021-08-18 /pmc/articles/PMC8372957/ /pubmed/34407116 http://dx.doi.org/10.1371/journal.pone.0256245 Text en © 2021 Burg, Ausubel https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Burg, David Ausubel, Jesse H. Moore’s Law revisited through Intel chip density |
title | Moore’s Law revisited through Intel chip density |
title_full | Moore’s Law revisited through Intel chip density |
title_fullStr | Moore’s Law revisited through Intel chip density |
title_full_unstemmed | Moore’s Law revisited through Intel chip density |
title_short | Moore’s Law revisited through Intel chip density |
title_sort | moore’s law revisited through intel chip density |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372957/ https://www.ncbi.nlm.nih.gov/pubmed/34407116 http://dx.doi.org/10.1371/journal.pone.0256245 |
work_keys_str_mv | AT burgdavid mooreslawrevisitedthroughintelchipdensity AT ausubeljesseh mooreslawrevisitedthroughintelchipdensity |