Cargando…
Biomedical Implants with Charge‐Transfer Monitoring and Regulating Abilities
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373130/ https://www.ncbi.nlm.nih.gov/pubmed/34166584 http://dx.doi.org/10.1002/advs.202004393 |
Sumario: | Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human‐made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge‐transfer regulating or monitoring abilities. Furthermore, three major charge‐transfer controlling systems, including wired, self‐activated, and stimuli‐responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed. |
---|