Cargando…

Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery

One of the key challenges in achieving practical lithium–air battery is the poor moisture tolerance of the lithium metal anode. Herein, guided by theoretical modeling, an effective tactic for realizing water‐resistant Li anode by implementing a wax‐assisted transfer protocol is reported to passivate...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yong, Qi, Pengwei, Ma, Jun, Wei, Le, Zhao, Liang, Cheng, Jian, Su, Yanhui, Gu, Yuting, Lian, Yuebin, Peng, Yang, Shen, Yanbin, Chen, Liwei, Deng, Zhao, Liu, Zhongfan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373161/
https://www.ncbi.nlm.nih.gov/pubmed/34081418
http://dx.doi.org/10.1002/advs.202100488
_version_ 1783739899408547840
author Ma, Yong
Qi, Pengwei
Ma, Jun
Wei, Le
Zhao, Liang
Cheng, Jian
Su, Yanhui
Gu, Yuting
Lian, Yuebin
Peng, Yang
Shen, Yanbin
Chen, Liwei
Deng, Zhao
Liu, Zhongfan
author_facet Ma, Yong
Qi, Pengwei
Ma, Jun
Wei, Le
Zhao, Liang
Cheng, Jian
Su, Yanhui
Gu, Yuting
Lian, Yuebin
Peng, Yang
Shen, Yanbin
Chen, Liwei
Deng, Zhao
Liu, Zhongfan
author_sort Ma, Yong
collection PubMed
description One of the key challenges in achieving practical lithium–air battery is the poor moisture tolerance of the lithium metal anode. Herein, guided by theoretical modeling, an effective tactic for realizing water‐resistant Li anode by implementing a wax‐assisted transfer protocol is reported to passivate the Li surface with an inert high‐quality chemical vapor deposition (CVD) graphene layer. This electrically conductive and mechanically robust graphene coating enables serving as an artificial solid/electrolyte interphase (SEI), guiding homogeneous Li plating/stripping, suppressing dendrite and “dead” Li formation, as well as passivating the Li surface from moisture erosion and side reactions. Consequently, lithium–air batteries fabricated with the passivated Li anodes demonstrate a superb cycling performance up to 2300 h (230 cycles at 1000 mAh g(−1), 200 mA g(−1)). More strikingly, the anode recycled thereafter can be recoupled with a fresh cathode to continuously run for 400 extended hours. Comprehensive time‐lapse and ex situ microscopic and spectroscopic investigations are further carried out for elucidating the fundamentals behind the extraordinary air and electrochemical stability.
format Online
Article
Text
id pubmed-8373161
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83731612021-08-24 Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery Ma, Yong Qi, Pengwei Ma, Jun Wei, Le Zhao, Liang Cheng, Jian Su, Yanhui Gu, Yuting Lian, Yuebin Peng, Yang Shen, Yanbin Chen, Liwei Deng, Zhao Liu, Zhongfan Adv Sci (Weinh) Research Articles One of the key challenges in achieving practical lithium–air battery is the poor moisture tolerance of the lithium metal anode. Herein, guided by theoretical modeling, an effective tactic for realizing water‐resistant Li anode by implementing a wax‐assisted transfer protocol is reported to passivate the Li surface with an inert high‐quality chemical vapor deposition (CVD) graphene layer. This electrically conductive and mechanically robust graphene coating enables serving as an artificial solid/electrolyte interphase (SEI), guiding homogeneous Li plating/stripping, suppressing dendrite and “dead” Li formation, as well as passivating the Li surface from moisture erosion and side reactions. Consequently, lithium–air batteries fabricated with the passivated Li anodes demonstrate a superb cycling performance up to 2300 h (230 cycles at 1000 mAh g(−1), 200 mA g(−1)). More strikingly, the anode recycled thereafter can be recoupled with a fresh cathode to continuously run for 400 extended hours. Comprehensive time‐lapse and ex situ microscopic and spectroscopic investigations are further carried out for elucidating the fundamentals behind the extraordinary air and electrochemical stability. John Wiley and Sons Inc. 2021-06-03 /pmc/articles/PMC8373161/ /pubmed/34081418 http://dx.doi.org/10.1002/advs.202100488 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Ma, Yong
Qi, Pengwei
Ma, Jun
Wei, Le
Zhao, Liang
Cheng, Jian
Su, Yanhui
Gu, Yuting
Lian, Yuebin
Peng, Yang
Shen, Yanbin
Chen, Liwei
Deng, Zhao
Liu, Zhongfan
Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
title Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
title_full Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
title_fullStr Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
title_full_unstemmed Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
title_short Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
title_sort wax‐transferred hydrophobic cvd graphene enables water‐resistant and dendrite‐free lithium anode toward long cycle li–air battery
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373161/
https://www.ncbi.nlm.nih.gov/pubmed/34081418
http://dx.doi.org/10.1002/advs.202100488
work_keys_str_mv AT mayong waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT qipengwei waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT majun waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT weile waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT zhaoliang waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT chengjian waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT suyanhui waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT guyuting waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT lianyuebin waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT pengyang waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT shenyanbin waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT chenliwei waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT dengzhao waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery
AT liuzhongfan waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery