Cargando…
Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery
One of the key challenges in achieving practical lithium–air battery is the poor moisture tolerance of the lithium metal anode. Herein, guided by theoretical modeling, an effective tactic for realizing water‐resistant Li anode by implementing a wax‐assisted transfer protocol is reported to passivate...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373161/ https://www.ncbi.nlm.nih.gov/pubmed/34081418 http://dx.doi.org/10.1002/advs.202100488 |
_version_ | 1783739899408547840 |
---|---|
author | Ma, Yong Qi, Pengwei Ma, Jun Wei, Le Zhao, Liang Cheng, Jian Su, Yanhui Gu, Yuting Lian, Yuebin Peng, Yang Shen, Yanbin Chen, Liwei Deng, Zhao Liu, Zhongfan |
author_facet | Ma, Yong Qi, Pengwei Ma, Jun Wei, Le Zhao, Liang Cheng, Jian Su, Yanhui Gu, Yuting Lian, Yuebin Peng, Yang Shen, Yanbin Chen, Liwei Deng, Zhao Liu, Zhongfan |
author_sort | Ma, Yong |
collection | PubMed |
description | One of the key challenges in achieving practical lithium–air battery is the poor moisture tolerance of the lithium metal anode. Herein, guided by theoretical modeling, an effective tactic for realizing water‐resistant Li anode by implementing a wax‐assisted transfer protocol is reported to passivate the Li surface with an inert high‐quality chemical vapor deposition (CVD) graphene layer. This electrically conductive and mechanically robust graphene coating enables serving as an artificial solid/electrolyte interphase (SEI), guiding homogeneous Li plating/stripping, suppressing dendrite and “dead” Li formation, as well as passivating the Li surface from moisture erosion and side reactions. Consequently, lithium–air batteries fabricated with the passivated Li anodes demonstrate a superb cycling performance up to 2300 h (230 cycles at 1000 mAh g(−1), 200 mA g(−1)). More strikingly, the anode recycled thereafter can be recoupled with a fresh cathode to continuously run for 400 extended hours. Comprehensive time‐lapse and ex situ microscopic and spectroscopic investigations are further carried out for elucidating the fundamentals behind the extraordinary air and electrochemical stability. |
format | Online Article Text |
id | pubmed-8373161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83731612021-08-24 Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery Ma, Yong Qi, Pengwei Ma, Jun Wei, Le Zhao, Liang Cheng, Jian Su, Yanhui Gu, Yuting Lian, Yuebin Peng, Yang Shen, Yanbin Chen, Liwei Deng, Zhao Liu, Zhongfan Adv Sci (Weinh) Research Articles One of the key challenges in achieving practical lithium–air battery is the poor moisture tolerance of the lithium metal anode. Herein, guided by theoretical modeling, an effective tactic for realizing water‐resistant Li anode by implementing a wax‐assisted transfer protocol is reported to passivate the Li surface with an inert high‐quality chemical vapor deposition (CVD) graphene layer. This electrically conductive and mechanically robust graphene coating enables serving as an artificial solid/electrolyte interphase (SEI), guiding homogeneous Li plating/stripping, suppressing dendrite and “dead” Li formation, as well as passivating the Li surface from moisture erosion and side reactions. Consequently, lithium–air batteries fabricated with the passivated Li anodes demonstrate a superb cycling performance up to 2300 h (230 cycles at 1000 mAh g(−1), 200 mA g(−1)). More strikingly, the anode recycled thereafter can be recoupled with a fresh cathode to continuously run for 400 extended hours. Comprehensive time‐lapse and ex situ microscopic and spectroscopic investigations are further carried out for elucidating the fundamentals behind the extraordinary air and electrochemical stability. John Wiley and Sons Inc. 2021-06-03 /pmc/articles/PMC8373161/ /pubmed/34081418 http://dx.doi.org/10.1002/advs.202100488 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Ma, Yong Qi, Pengwei Ma, Jun Wei, Le Zhao, Liang Cheng, Jian Su, Yanhui Gu, Yuting Lian, Yuebin Peng, Yang Shen, Yanbin Chen, Liwei Deng, Zhao Liu, Zhongfan Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery |
title | Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery |
title_full | Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery |
title_fullStr | Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery |
title_full_unstemmed | Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery |
title_short | Wax‐Transferred Hydrophobic CVD Graphene Enables Water‐Resistant and Dendrite‐Free Lithium Anode toward Long Cycle Li–Air Battery |
title_sort | wax‐transferred hydrophobic cvd graphene enables water‐resistant and dendrite‐free lithium anode toward long cycle li–air battery |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373161/ https://www.ncbi.nlm.nih.gov/pubmed/34081418 http://dx.doi.org/10.1002/advs.202100488 |
work_keys_str_mv | AT mayong waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT qipengwei waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT majun waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT weile waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT zhaoliang waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT chengjian waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT suyanhui waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT guyuting waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT lianyuebin waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT pengyang waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT shenyanbin waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT chenliwei waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT dengzhao waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery AT liuzhongfan waxtransferredhydrophobiccvdgrapheneenableswaterresistantanddendritefreelithiumanodetowardlongcycleliairbattery |