Cargando…
Decreased Abundance of Akkermansia muciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes
Although obesity occurs in most of the patients with type 2 diabetes (T2D), a fraction of patients with T2D are underweight or have normal weight. Several studies have linked the gut microbiome to obesity and T2D, but the role of gut microbiota in lean individuals with T2D having unique clinical cha...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373164/ https://www.ncbi.nlm.nih.gov/pubmed/34085773 http://dx.doi.org/10.1002/advs.202100536 |
Sumario: | Although obesity occurs in most of the patients with type 2 diabetes (T2D), a fraction of patients with T2D are underweight or have normal weight. Several studies have linked the gut microbiome to obesity and T2D, but the role of gut microbiota in lean individuals with T2D having unique clinical characteristics remains unclear. A metagenomic and targeted metabolomic analysis is conducted in 182 lean and abdominally obese individuals with and without newly diagnosed T2D. The abundance of Akkermansia muciniphila (A. muciniphila) significantly decreases in lean individuals with T2D than without T2D, but not in the comparison of obese individuals with and without T2D. Its abundance correlates inversely with serum 3β‐chenodeoxycholic acid (βCDCA) levels and positively with insulin secretion and fibroblast growth factor 15/19 (FGF15/19) concentrations. The supplementation with A. muciniphila is sufficient to protect mice against high sucrose‐induced impairment of glucose intolerance by decreasing βCDCA and increasing insulin secretion and FGF15/19. Furthermore, βCDCA inhibits insulin secretion and FGF15/19 expression. These findings suggest that decreased abundance of A. muciniphila is linked to the impairment of insulin secretion and glucose homeostasis in lean T2D, paving the way for new therapeutic options for the prevention or treatment of diabetes. |
---|