Cargando…

Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells

Antimony selenide (Sb(2)Se(3)) nanorod arrays along the [001] orientation are known to transfer photogenerated carriers rapidly due to the strongly anisotropic one‐dimensional crystal structure. With advanced light‐trapping structures, the Sb(2)Se(3) nanorod array‐based solar cells have excellent br...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tao, Liang, Xiaoyang, Liu, Yufan, Li, Xiaoli, Wang, Shufang, Mai, Yaohua, Li, Zhiqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373166/
https://www.ncbi.nlm.nih.gov/pubmed/34114348
http://dx.doi.org/10.1002/advs.202100868
_version_ 1783739900569321472
author Liu, Tao
Liang, Xiaoyang
Liu, Yufan
Li, Xiaoli
Wang, Shufang
Mai, Yaohua
Li, Zhiqiang
author_facet Liu, Tao
Liang, Xiaoyang
Liu, Yufan
Li, Xiaoli
Wang, Shufang
Mai, Yaohua
Li, Zhiqiang
author_sort Liu, Tao
collection PubMed
description Antimony selenide (Sb(2)Se(3)) nanorod arrays along the [001] orientation are known to transfer photogenerated carriers rapidly due to the strongly anisotropic one‐dimensional crystal structure. With advanced light‐trapping structures, the Sb(2)Se(3) nanorod array‐based solar cells have excellent broad spectral response properties, and higher short‐circuit current density than the conventional planar structured thin film solar cells. However, the interface engineering for the Sb(2)Se(3) nanorod array‐based solar cell is more crucial to increase the performance, because it is challenging to coat a compact buffer layer with perfect coverage to form a uniform heterojunction interface due to its large surface area and length–diameter ratio. In this work, an intermeshing In(2)S(3) nanosheet‐CdS composite as the buffer layer, compactly coating on the Sb(2)Se(3) nanorod surface is constructed. The application of In(2)S(3)‐CdS composite buffers build a gradient conduction band energy configuration in the Sb(2)Se(3)/buffer heterojunction interface, which reduces the interface recombination and enhances the transfer and collection of photogenerated electrons. The energy‐level regulation minimizes the open‐circuit voltage deficit at the interfaces of buffer/Sb(2)Se(3) and buffer/ZnO layers in the Sb(2)Se(3) solar cells. Consequently, the Sb(2)Se(3) nanorod array solar cell based on In(2)S(3)‐CdS composite buffers achieves an efficiency of as high as 9.19% with a V (OC) of 461 mV.
format Online
Article
Text
id pubmed-8373166
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83731662021-08-24 Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells Liu, Tao Liang, Xiaoyang Liu, Yufan Li, Xiaoli Wang, Shufang Mai, Yaohua Li, Zhiqiang Adv Sci (Weinh) Research Articles Antimony selenide (Sb(2)Se(3)) nanorod arrays along the [001] orientation are known to transfer photogenerated carriers rapidly due to the strongly anisotropic one‐dimensional crystal structure. With advanced light‐trapping structures, the Sb(2)Se(3) nanorod array‐based solar cells have excellent broad spectral response properties, and higher short‐circuit current density than the conventional planar structured thin film solar cells. However, the interface engineering for the Sb(2)Se(3) nanorod array‐based solar cell is more crucial to increase the performance, because it is challenging to coat a compact buffer layer with perfect coverage to form a uniform heterojunction interface due to its large surface area and length–diameter ratio. In this work, an intermeshing In(2)S(3) nanosheet‐CdS composite as the buffer layer, compactly coating on the Sb(2)Se(3) nanorod surface is constructed. The application of In(2)S(3)‐CdS composite buffers build a gradient conduction band energy configuration in the Sb(2)Se(3)/buffer heterojunction interface, which reduces the interface recombination and enhances the transfer and collection of photogenerated electrons. The energy‐level regulation minimizes the open‐circuit voltage deficit at the interfaces of buffer/Sb(2)Se(3) and buffer/ZnO layers in the Sb(2)Se(3) solar cells. Consequently, the Sb(2)Se(3) nanorod array solar cell based on In(2)S(3)‐CdS composite buffers achieves an efficiency of as high as 9.19% with a V (OC) of 461 mV. John Wiley and Sons Inc. 2021-06-10 /pmc/articles/PMC8373166/ /pubmed/34114348 http://dx.doi.org/10.1002/advs.202100868 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Liu, Tao
Liang, Xiaoyang
Liu, Yufan
Li, Xiaoli
Wang, Shufang
Mai, Yaohua
Li, Zhiqiang
Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells
title Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells
title_full Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells
title_fullStr Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells
title_full_unstemmed Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells
title_short Conduction Band Energy‐Level Engineering for Improving Open‐Circuit Voltage in Antimony Selenide Nanorod Array Solar Cells
title_sort conduction band energy‐level engineering for improving open‐circuit voltage in antimony selenide nanorod array solar cells
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373166/
https://www.ncbi.nlm.nih.gov/pubmed/34114348
http://dx.doi.org/10.1002/advs.202100868
work_keys_str_mv AT liutao conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells
AT liangxiaoyang conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells
AT liuyufan conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells
AT lixiaoli conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells
AT wangshufang conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells
AT maiyaohua conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells
AT lizhiqiang conductionbandenergylevelengineeringforimprovingopencircuitvoltageinantimonyselenidenanorodarraysolarcells