Cargando…

Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts

Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only s...

Descripción completa

Detalles Bibliográficos
Autores principales: Furushiro, Yuya, Kobayashi, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Applied Glycoscience 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373581/
https://www.ncbi.nlm.nih.gov/pubmed/34429694
http://dx.doi.org/10.5458/jag.jag.JAG-2019_0014
_version_ 1783739963046625280
author Furushiro, Yuya
Kobayashi, Takashi
author_facet Furushiro, Yuya
Kobayashi, Takashi
author_sort Furushiro, Yuya
collection PubMed
description Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose.
format Online
Article
Text
id pubmed-8373581
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Japanese Society of Applied Glycoscience
record_format MEDLINE/PubMed
spelling pubmed-83735812021-08-23 Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts Furushiro, Yuya Kobayashi, Takashi J Appl Glycosci (1999) Regular Paper Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose. The Japanese Society of Applied Glycoscience 2020-10-29 /pmc/articles/PMC8373581/ /pubmed/34429694 http://dx.doi.org/10.5458/jag.jag.JAG-2019_0014 Text en 2020 by The Japanese Society of Applied Glycoscience https://creativecommons.org/licenses/by-nc/4.0/This is an open-access paper distributed under the terms of the Creative Commons Attribution Non-Commercial (by-nc) License (CC-BY-NC4.0: https://creativecommons.org/licenses/by-nc/4.0/).
spellingShingle Regular Paper
Furushiro, Yuya
Kobayashi, Takashi
Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts
title Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts
title_full Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts
title_fullStr Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts
title_full_unstemmed Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts
title_short Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts
title_sort reaction behavior of glucose and fructose in subcritical water in the presence of various salts
topic Regular Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373581/
https://www.ncbi.nlm.nih.gov/pubmed/34429694
http://dx.doi.org/10.5458/jag.jag.JAG-2019_0014
work_keys_str_mv AT furushiroyuya reactionbehaviorofglucoseandfructoseinsubcriticalwaterinthepresenceofvarioussalts
AT kobayashitakashi reactionbehaviorofglucoseandfructoseinsubcriticalwaterinthepresenceofvarioussalts