Cargando…
Docking-generated multiple ligand poses for bootstrapping bioactivity classifying Machine Learning: Repurposing covalent inhibitors for COVID-19-related TMPRSS2 as case study
In the present work we introduce the use of multiple docked poses for bootstrapping machine learning-based QSAR modelling. Ligand-receptor contact fingerprints are implemented as descriptor variables. We implemented this method for the discovery of potential inhibitors of the serine protease enzyme...
Autores principales: | Hatmal, Ma'mon M., Abuyaman, Omar, Taha, Mutasem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373588/ https://www.ncbi.nlm.nih.gov/pubmed/34426763 http://dx.doi.org/10.1016/j.csbj.2021.08.023 |
Ejemplares similares
-
Discovery of new Cdc2-like kinase 4 (CLK4) inhibitors via pharmacophore exploration combined with flexible docking-based ligand/receptor contact fingerprints and machine learning
por: Al-Tawil, Mai Fayiz, et al.
Publicado: (2022) -
Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning
por: Jaradat, Nour Jamal, et al.
Publicado: (2023) -
The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction
por: Shen, Chao, et al.
Publicado: (2021) -
Association of Breastfeeding Duration with Susceptibility to Allergy, Influenza, and Methylation Status of TLR1 Gene
por: Hatmal, Ma’mon M., et al.
Publicado: (2019) -
Ligand Pose and Orientational Sampling in Molecular Docking
por: Coleman, Ryan G., et al.
Publicado: (2013)