Cargando…
Speakers exhibit a multimodal Lombard effect in noise
In everyday conversation, we are often challenged with communicating in non-ideal settings, such as in noise. Increased speech intensity and larger mouth movements are used to overcome noise in constrained settings (the Lombard effect). How we adapt to noise in face-to-face interaction, the natural...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373897/ https://www.ncbi.nlm.nih.gov/pubmed/34408178 http://dx.doi.org/10.1038/s41598-021-95791-0 |
Sumario: | In everyday conversation, we are often challenged with communicating in non-ideal settings, such as in noise. Increased speech intensity and larger mouth movements are used to overcome noise in constrained settings (the Lombard effect). How we adapt to noise in face-to-face interaction, the natural environment of human language use, where manual gestures are ubiquitous, is currently unknown. We asked Dutch adults to wear headphones with varying levels of multi-talker babble while attempting to communicate action verbs to one another. Using quantitative motion capture and acoustic analyses, we found that (1) noise is associated with increased speech intensity and enhanced gesture kinematics and mouth movements, and (2) acoustic modulation only occurs when gestures are not present, while kinematic modulation occurs regardless of co-occurring speech. Thus, in face-to-face encounters the Lombard effect is not constrained to speech but is a multimodal phenomenon where the visual channel carries most of the communicative burden. |
---|