Cargando…

The Penn State Protein Ladder system for inexpensive protein molecular weight markers

We have created the Penn State Protein Ladder system to produce protein molecular weight markers easily and inexpensively (less than a penny a lane). The system includes plasmids which express 10, 15, 20, 30, 40, 50, 60, 80 and 100 kD proteins in E. coli. Each protein migrates appropriately on SDS-P...

Descripción completa

Detalles Bibliográficos
Autores principales: Santilli, Ryan T., Williamson, John E., Shibata, Yoshitaka, Sowers, Rosalie P., Fleischman, Andrew N., Tan, Song
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373980/
https://www.ncbi.nlm.nih.gov/pubmed/34408191
http://dx.doi.org/10.1038/s41598-021-96051-x
Descripción
Sumario:We have created the Penn State Protein Ladder system to produce protein molecular weight markers easily and inexpensively (less than a penny a lane). The system includes plasmids which express 10, 15, 20, 30, 40, 50, 60, 80 and 100 kD proteins in E. coli. Each protein migrates appropriately on SDS-PAGE gels, is expressed at very high levels (10–50 mg per liter of culture), is easy to purify via histidine tags and can be detected directly on Western blots via engineered immunoglobulin binding domains. We have also constructed plasmids to express 150 and 250 kD proteins. For more efficient production, we have created two polycistronic expression vectors which coexpress the 10, 30, 50, 100 kD proteins or the 20, 40, 60, 80 kD proteins. 50 ml of culture is sufficient to produce 20,000 lanes of individual ladder protein or 3750 lanes of each set of coexpressed ladder proteins. These Penn State Protein Ladder expression plasmids also constitute useful reagents for teaching laboratories to demonstrate recombinant expression in E. coli and affinity protein purification, and to research laboratories desiring positive controls for recombinant protein expression and purification.