Cargando…
Editorial: Predicting Chronological Age From Structural Neuroimaging: The Predictive Analytics Competition 2019
Autores principales: | Fisch, Lukas, Leenings, Ramona, Winter, Nils R., Dannlowski, Udo, Gaser, Christian, Cole, James H., Hahn, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374100/ https://www.ncbi.nlm.nih.gov/pubmed/34421686 http://dx.doi.org/10.3389/fpsyt.2021.710932 |
Ejemplares similares
-
Brain-Age Prediction Using Shallow Machine Learning: Predictive Analytics Competition 2019
por: Da Costa, Pedro F., et al.
Publicado: (2020) -
Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019
por: Lombardi, Angela, et al.
Publicado: (2021) -
From multivariate methods to an AI ecosystem
por: Winter, Nils R., et al.
Publicado: (2021) -
Systematic misestimation of machine learning performance in neuroimaging studies of depression
por: Flint, Claas, et al.
Publicado: (2021) -
Ensemble Learning of Convolutional Neural Network, Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge
por: Couvy-Duchesne, Baptiste, et al.
Publicado: (2020)