Cargando…

Multilevel-growth modelling for the study of sustainability transitions

Sustainability Transitions (ST) is a complex phenomenon, encompassing environmental, societal and economic aspects. Its study requires a proper investigation, with the identification of a robust indicator and the definition of a suitable method of analysis. To identify the most informative geographi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mura, Matteo, Longo, Mariolina, Toschi, Laura, Zanni, Sara, Visani, Franco, Bianconcini, Silvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374327/
https://www.ncbi.nlm.nih.gov/pubmed/34434847
http://dx.doi.org/10.1016/j.mex.2021.101359
Descripción
Sumario:Sustainability Transitions (ST) is a complex phenomenon, encompassing environmental, societal and economic aspects. Its study requires a proper investigation, with the identification of a robust indicator and the definition of a suitable method of analysis. To identify the most informative geographical boundaries for analysing ST pathways, we consider the Carbon Emission Intensity (CEI) and estimate a four-level growth model to study its pattern over time for all the EU regions. We apply this model to a novel longitudinal dataset that covers CEI data of European regions at four different geographical scales (state, areas, regions, and provinces) over a nine-year timespan. This approach aims at supporting the decision-makers in developing more effective sustainability transitions policies across Europe, especially focusing on regions and overcoming the well-known “one-size fits all” approach. • The unconditional growth model has been applied to a multi-level structure considering four levels, defined by three geographical scales and time. • The ideal structure of the model would have required five levels, but the sample size of the dataset made the application computationally unfeasible; • The application of the model allowed to identify patterns of stability and change over time of the variable amongst different geographical units.