Cargando…
Detecting diabetic retinopathy through machine learning on electronic health record data from an urban, safety net healthcare system
OBJECTIVE: Clinical guidelines recommend annual eye examinations to detect diabetic retinopathy (DR) in patients with diabetes. However, timely DR detection remains a problem in medically underserved and under-resourced settings in the United States. Machine learning that identifies patients with la...
Autores principales: | Ogunyemi, Omolola I, Gandhi, Meghal, Lee, Martin, Teklehaimanot, Senait, Daskivich, Lauren Patty, Hindman, David, Lopez, Kevin, Taira, Ricky K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374369/ https://www.ncbi.nlm.nih.gov/pubmed/34423259 http://dx.doi.org/10.1093/jamiaopen/ooab066 |
Ejemplares similares
-
Utilization of electronic health records and associated factors among nurses in a faith-based teaching hospital, Ilishan, Nigeria
por: Ayamolowo, Love B, et al.
Publicado: (2023) -
ClinicNet: machine learning for personalized clinical order set recommendations
por: Wang, Jonathan X, et al.
Publicado: (2020) -
Correlating electronic health record concepts with healthcare process events
por: Hripcsak, George, et al.
Publicado: (2013) -
Linkage of Hospital Records and Death Certificates by a Search Engine and Machine Learning
por: Cossin, Sebastien, et al.
Publicado: (2021) -
Electronic medical record implementation for a healthcare system caring for homeless people
por: Angoff, Gerald H, et al.
Publicado: (2018)