Cargando…
A fast, resource efficient, and reliable rule-based system for COVID-19 symptom identification
OBJECTIVE: With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time integration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource utilization and poor scalability limiting real-world integration with CDS. A...
Autores principales: | Sahoo, Himanshu S, Silverman, Greg M, Ingraham, Nicholas E, Lupei, Monica I, Puskarich, Michael A, Finzel, Raymond L, Sartori, John, Zhang, Rui, Knoll, Benjamin C, Liu, Sijia, Liu, Hongfang, Melton, Genevieve B, Tignanelli, Christopher J, Pakhomov, Serguei V S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374371/ https://www.ncbi.nlm.nih.gov/pubmed/34423261 http://dx.doi.org/10.1093/jamiaopen/ooab070 |
Ejemplares similares
-
Named Entity Recognition in Prehospital Trauma Care
por: Silverman, Greg M., et al.
Publicado: (2019) -
Evaluating active learning methods for annotating semantic predications
por: Vasilakes, Jake, et al.
Publicado: (2018) -
A 12-hospital prospective evaluation of a clinical decision support prognostic algorithm based on logistic regression as a form of machine learning to facilitate decision making for patients with suspected COVID-19
por: Lupei, Monica I., et al.
Publicado: (2022) -
Predictors of Postacute Sequelae of COVID-19 Development and Rehabilitation: A Retrospective Study
por: Abdelwahab, Nermine, et al.
Publicado: (2022) -
Longitudinal Analysis of New Information Types in Clinical Notes
por: Zhang, Rui, et al.
Publicado: (2014)