Cargando…
Fast synthesis of high surface area bio-based porous carbons for organic pollutant removal
A fast, facile and one-pot chemical activation method was used to develop porous carbons with high surface area and excellent phenolic micropollutant adsorption performance from renewable precursors. This method was applied to three precursors: naturally abundant, but often underestimated wildfire-d...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374634/ https://www.ncbi.nlm.nih.gov/pubmed/34430340 http://dx.doi.org/10.1016/j.mex.2021.101464 |
Sumario: | A fast, facile and one-pot chemical activation method was used to develop porous carbons with high surface area and excellent phenolic micropollutant adsorption performance from renewable precursors. This method was applied to three precursors: naturally abundant, but often underestimated wildfire-damaged boreal peats, corn starch, and cellulose. Porous carbon formation was accomplished through precursor impregnation with ZnCl(2) powder and their simultaneous pyrolysis under inert N(2) flow at 400 or 600 °C for 1 h. The maximum adsorption capacities of these bio-sorbents towards a model contaminant, p-nitrophenol, in simulated wastewater were equal to or superior than using a commercial activated carbon (CAC), Norit GSX (> 530 mg/g) over wide initial concentration ranges (20–2000 mg/L). p-nitrophenol adsorption best fitted Freundlich and Redlich-Peterson isotherms, suggesting multilayer chemisorption. Low concentration p-nitrophenol (20 mg/L) adsorption into the bio-sorbents was rapid in the first 4 h, and could reach high removals (> 98%). The method presented here yielded bio-sorbents with similarly high adsorption performance regardless of the precursor type, while avoiding energy-intensive processing steps during sorbent production. This study gives a useful alternative for manufacturing new sorbents from other upcycled carbonaceous and/or bio-based materials to remove micropollutants and heavy metals. • Fast, single-step chemical activation for manufacturing bio-based porous carbons. • Efficient adsorption towards aqueous phenolic micropollutant from batch studies. • A competitive substitute of charcoal activated carbons for water purification. |
---|