Cargando…

Multi-factor association dependence modelling for project risk analysis

This article presents an analytic (non-simulation) dependence model for quantitative project risk analysis. The multi-factor association model (MFAM) accounts for multiple association factors in typical project settings and provides a closed-form solution to a complete and mathematically consistent...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Byung-Cheol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374643/
https://www.ncbi.nlm.nih.gov/pubmed/34430332
http://dx.doi.org/10.1016/j.mex.2021.101443
_version_ 1783740160254410752
author Kim, Byung-Cheol
author_facet Kim, Byung-Cheol
author_sort Kim, Byung-Cheol
collection PubMed
description This article presents an analytic (non-simulation) dependence model for quantitative project risk analysis. The multi-factor association model (MFAM) accounts for multiple association factors in typical project settings and provides a closed-form solution to a complete and mathematically consistent correlation matrix. Given standardized, ubiquitous project plans (e.g., work breakdown structure, resource allocation, or risk register), the MFAM establishes a hierarchical tree of association factors, which is subsequently encoded into an analytic model for quantitative risk analysis. In this article, we present the MFAM programmed in Microsoft Excel and demonstrate the computational efficiency of the MFAM using two alternative schedules with distinct resource utilizations. With the enhanced robustness in dealing with multiple risk factors in a project and the computational efficiency from the non-simulation second-moment approach, the MFAM offers additional flexibility for and scalability to large-scale project risk analysis problems. The modelling procedures and solutions presented in this article highlight three potentials of the MFAM as a robust quantitative risk analysis tool. • The MFAM can be fully programmed in Microsoft Excel using only basic cell functions. • Under mild assumptions, the MFAM provides reliable risk estimates comparable to Monte Carlo simulation. • The MFAM is scalable to high-dimensional risk problems (i.e., with multi-thousands or more) with an affordable computational burden.
format Online
Article
Text
id pubmed-8374643
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-83746432021-08-23 Multi-factor association dependence modelling for project risk analysis Kim, Byung-Cheol MethodsX Method Article This article presents an analytic (non-simulation) dependence model for quantitative project risk analysis. The multi-factor association model (MFAM) accounts for multiple association factors in typical project settings and provides a closed-form solution to a complete and mathematically consistent correlation matrix. Given standardized, ubiquitous project plans (e.g., work breakdown structure, resource allocation, or risk register), the MFAM establishes a hierarchical tree of association factors, which is subsequently encoded into an analytic model for quantitative risk analysis. In this article, we present the MFAM programmed in Microsoft Excel and demonstrate the computational efficiency of the MFAM using two alternative schedules with distinct resource utilizations. With the enhanced robustness in dealing with multiple risk factors in a project and the computational efficiency from the non-simulation second-moment approach, the MFAM offers additional flexibility for and scalability to large-scale project risk analysis problems. The modelling procedures and solutions presented in this article highlight three potentials of the MFAM as a robust quantitative risk analysis tool. • The MFAM can be fully programmed in Microsoft Excel using only basic cell functions. • Under mild assumptions, the MFAM provides reliable risk estimates comparable to Monte Carlo simulation. • The MFAM is scalable to high-dimensional risk problems (i.e., with multi-thousands or more) with an affordable computational burden. Elsevier 2021-07-05 /pmc/articles/PMC8374643/ /pubmed/34430332 http://dx.doi.org/10.1016/j.mex.2021.101443 Text en © 2021 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Method Article
Kim, Byung-Cheol
Multi-factor association dependence modelling for project risk analysis
title Multi-factor association dependence modelling for project risk analysis
title_full Multi-factor association dependence modelling for project risk analysis
title_fullStr Multi-factor association dependence modelling for project risk analysis
title_full_unstemmed Multi-factor association dependence modelling for project risk analysis
title_short Multi-factor association dependence modelling for project risk analysis
title_sort multi-factor association dependence modelling for project risk analysis
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374643/
https://www.ncbi.nlm.nih.gov/pubmed/34430332
http://dx.doi.org/10.1016/j.mex.2021.101443
work_keys_str_mv AT kimbyungcheol multifactorassociationdependencemodellingforprojectriskanalysis