Cargando…
One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR
The eventual exploitation of one-dimensional nanomaterials needs the development of scalable, high yield, homogeneous and environmentally friendly methods capable of meeting the requirements for fabrication of functional nanomaterials with properties on demand. In this article, we demonstrate a vacu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374677/ https://www.ncbi.nlm.nih.gov/pubmed/34477662 http://dx.doi.org/10.1039/d1nr01937f |
_version_ | 1783740167758020608 |
---|---|
author | Castillo-Seoane, Javier Gil-Rostra, Jorge López-Flores, Víctor Lozano, Gabriel Javier Ferrer, F. Espinós, Juan P. Ostrikov, Kostya (Ken) Yubero, Francisco González-Elipe, Agustín R. Barranco, Ángel Sánchez-Valencia, Juan R. Borrás, Ana |
author_facet | Castillo-Seoane, Javier Gil-Rostra, Jorge López-Flores, Víctor Lozano, Gabriel Javier Ferrer, F. Espinós, Juan P. Ostrikov, Kostya (Ken) Yubero, Francisco González-Elipe, Agustín R. Barranco, Ángel Sánchez-Valencia, Juan R. Borrás, Ana |
author_sort | Castillo-Seoane, Javier |
collection | PubMed |
description | The eventual exploitation of one-dimensional nanomaterials needs the development of scalable, high yield, homogeneous and environmentally friendly methods capable of meeting the requirements for fabrication of functional nanomaterials with properties on demand. In this article, we demonstrate a vacuum and plasma one-reactor approach for the synthesis of fundamental common elements in solar energy and optoelectronics, i.e. the transparent conducting electrode but in the form of nanotube and nanotree architectures. Although the process is generic and can be used for a variety of TCOs and wide-bandgap semiconductors, we focus herein on indium doped tin oxide (ITO) as the most previously researched in previous applications. This protocol combines widely applied deposition techniques such as thermal evaporation for the formation of organic nanowires serving as 1D and 3D soft templates, deposition of polycrystalline layers by magnetron sputtering, and removal of the templates by simply annealing under mild vacuum conditions. The process variables are tuned to control the stoichiometry, morphology, and alignment of the ITO nanotubes and nanotrees. Four-probe characterization reveals the improved lateral connectivity of the ITO nanotrees and applied on individual nanotubes shows resistivities as low as 3.5 ± 0.9 × 10(–4) Ω cm, a value comparable to that of single-crystalline counterparts. The assessment of diffuse reflectance and transmittance in the UV-Vis range confirms the viability of the supported ITO nanotubes as random optical media working as strong scattering layers. Their further ability to form ITO nanotrees opens a path for practical applications as ultra-broadband absorbers in the NIR. The demonstrated low resistivity and optical properties of these ITO nanostructures open a way for their use in LEDs, IR shields, energy harvesting, nanosensors, and photoelectrochemical applications. |
format | Online Article Text |
id | pubmed-8374677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-83746772021-09-01 One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR Castillo-Seoane, Javier Gil-Rostra, Jorge López-Flores, Víctor Lozano, Gabriel Javier Ferrer, F. Espinós, Juan P. Ostrikov, Kostya (Ken) Yubero, Francisco González-Elipe, Agustín R. Barranco, Ángel Sánchez-Valencia, Juan R. Borrás, Ana Nanoscale Chemistry The eventual exploitation of one-dimensional nanomaterials needs the development of scalable, high yield, homogeneous and environmentally friendly methods capable of meeting the requirements for fabrication of functional nanomaterials with properties on demand. In this article, we demonstrate a vacuum and plasma one-reactor approach for the synthesis of fundamental common elements in solar energy and optoelectronics, i.e. the transparent conducting electrode but in the form of nanotube and nanotree architectures. Although the process is generic and can be used for a variety of TCOs and wide-bandgap semiconductors, we focus herein on indium doped tin oxide (ITO) as the most previously researched in previous applications. This protocol combines widely applied deposition techniques such as thermal evaporation for the formation of organic nanowires serving as 1D and 3D soft templates, deposition of polycrystalline layers by magnetron sputtering, and removal of the templates by simply annealing under mild vacuum conditions. The process variables are tuned to control the stoichiometry, morphology, and alignment of the ITO nanotubes and nanotrees. Four-probe characterization reveals the improved lateral connectivity of the ITO nanotrees and applied on individual nanotubes shows resistivities as low as 3.5 ± 0.9 × 10(–4) Ω cm, a value comparable to that of single-crystalline counterparts. The assessment of diffuse reflectance and transmittance in the UV-Vis range confirms the viability of the supported ITO nanotubes as random optical media working as strong scattering layers. Their further ability to form ITO nanotrees opens a path for practical applications as ultra-broadband absorbers in the NIR. The demonstrated low resistivity and optical properties of these ITO nanostructures open a way for their use in LEDs, IR shields, energy harvesting, nanosensors, and photoelectrochemical applications. The Royal Society of Chemistry 2021-07-05 /pmc/articles/PMC8374677/ /pubmed/34477662 http://dx.doi.org/10.1039/d1nr01937f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Castillo-Seoane, Javier Gil-Rostra, Jorge López-Flores, Víctor Lozano, Gabriel Javier Ferrer, F. Espinós, Juan P. Ostrikov, Kostya (Ken) Yubero, Francisco González-Elipe, Agustín R. Barranco, Ángel Sánchez-Valencia, Juan R. Borrás, Ana One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR |
title | One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR |
title_full | One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR |
title_fullStr | One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR |
title_full_unstemmed | One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR |
title_short | One-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the NIR |
title_sort | one-reactor vacuum and plasma synthesis of transparent conducting oxide nanotubes and nanotrees: from single wire conductivity to ultra-broadband perfect absorbers in the nir |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374677/ https://www.ncbi.nlm.nih.gov/pubmed/34477662 http://dx.doi.org/10.1039/d1nr01937f |
work_keys_str_mv | AT castilloseoanejavier onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT gilrostrajorge onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT lopezfloresvictor onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT lozanogabriel onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT javierferrerf onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT espinosjuanp onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT ostrikovkostyaken onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT yuberofrancisco onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT gonzalezelipeagustinr onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT barrancoangel onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT sanchezvalenciajuanr onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir AT borrasana onereactorvacuumandplasmasynthesisoftransparentconductingoxidenanotubesandnanotreesfromsinglewireconductivitytoultrabroadbandperfectabsorbersinthenir |