Cargando…
A Methodology for Validating Diversity in Synthetic Time Series Generation()
In order for researchers to deliver robust evaluations of time series models, it often requires high volumes of data to ensure the appropriate level of rigor in testing. However, for many researchers, the lack of time series presents a barrier to a deeper evaluation. While researchers have developed...
Autores principales: | Bahrpeyma, Fouad, Roantree, Mark, Cappellari, Paolo, Scriney, Michael, McCarren, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374706/ https://www.ncbi.nlm.nih.gov/pubmed/34434865 http://dx.doi.org/10.1016/j.mex.2021.101459 |
Ejemplares similares
-
Benchmarking Parametric and Machine Learning Models for Genomic Prediction of Complex Traits
por: Azodi, Christina B., et al.
Publicado: (2019) -
Synthetic control methodology as a tool for evaluating population-level health interventions
por: Bouttell, Janet, et al.
Publicado: (2018) -
An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential
por: McCarren, Patrick, et al.
Publicado: (2011) -
Generation of Synthetic Transcriptome Data with Defined Statistical Properties for the Development and Testing of New Analysis Methods
por: Brysbaert, Guillaume, et al.
Publicado: (2007) -
Inferring Epistasis from Genetic Time-series Data
por: Sohail, Muhammad Saqib, et al.
Publicado: (2022)