Cargando…
Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression
PURPOSE: Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375002/ https://www.ncbi.nlm.nih.gov/pubmed/34398198 http://dx.doi.org/10.1167/iovs.62.10.14 |
_version_ | 1783740233532047360 |
---|---|
author | Schmitt, Heather M. Fehrman, Rachel L. Maes, Margaret E. Yang, Huan Guo, Lian-Wang Schlamp, Cassandra L. Pelzel, Heather R. Nickells, Robert W. |
author_facet | Schmitt, Heather M. Fehrman, Rachel L. Maes, Margaret E. Yang, Huan Guo, Lian-Wang Schlamp, Cassandra L. Pelzel, Heather R. Nickells, Robert W. |
author_sort | Schmitt, Heather M. |
collection | PubMed |
description | PURPOSE: Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. METHODS: Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. RESULTS: Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. CONCLUSIONS: Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway. |
format | Online Article Text |
id | pubmed-8375002 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-83750022021-08-26 Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression Schmitt, Heather M. Fehrman, Rachel L. Maes, Margaret E. Yang, Huan Guo, Lian-Wang Schlamp, Cassandra L. Pelzel, Heather R. Nickells, Robert W. Invest Ophthalmol Vis Sci Glaucoma PURPOSE: Inhibition or targeted deletion of histone deacetylase 3 (HDAC3) is neuroprotective in a variety neurodegenerative conditions, including retinal ganglion cells (RGCs) after acute optic nerve damage. Consistent with this, induced HDAC3 expression in cultured cells shows selective toxicity to neurons. Despite an established role for HDAC3 in neuronal pathology, little is known regarding the mechanism of this pathology. METHODS: Induced expression of an HDAC3-mCherry fusion protein in mouse RGCs was accomplished by transduction with AAV2/2-Pgk-HDAC3-mCherry. Increased susceptibility to optic nerve damage in HDAC3-mCherry expressing RGCs was evaluated in transduced mice that received acute optic nerve crush surgery. Expression of HDAC3-FLAG or HDAC3-mCherry was induced by nucleofection or transfection of plasmids into differentiated or undifferentiated 661W tissue culture cells. Immunostaining for cleaved caspase 3, localization of a GFP-BAX fusion protein, and quantitative RT-PCR was used to evaluate HDAC3-induced damage. RESULTS: Induced expression of exogenous HDAC3 in RGCs by viral-mediated gene transfer resulted in modest levels of cell death but significantly increased the sensitivity of these neurons to axonal damage. Undifferentiated 661W retinal precursor cells were resilient to induced HDAC3 expression, but after differentiation, HDAC3 induced GFP-BAX recruitment to the mitochondria and BAX/BAK dependent activation of caspase 3. This was accompanied by an increase in accumulation of transcripts for the JNK2/3 kinases and the p53-regulated BH3-only gene Bbc3/Puma. Cell cycle arrest of undifferentiated 661W cells did not increase their sensitivity to HDAC3 expression. CONCLUSIONS: Collectively, these results indicate that HDAC3-induced toxicity to neurons is mediated by the intrinsic apoptotic pathway. The Association for Research in Vision and Ophthalmology 2021-08-16 /pmc/articles/PMC8375002/ /pubmed/34398198 http://dx.doi.org/10.1167/iovs.62.10.14 Text en Copyright 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Glaucoma Schmitt, Heather M. Fehrman, Rachel L. Maes, Margaret E. Yang, Huan Guo, Lian-Wang Schlamp, Cassandra L. Pelzel, Heather R. Nickells, Robert W. Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression |
title | Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression |
title_full | Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression |
title_fullStr | Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression |
title_full_unstemmed | Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression |
title_short | Increased Susceptibility and Intrinsic Apoptotic Signaling in Neurons by Induced HDAC3 Expression |
title_sort | increased susceptibility and intrinsic apoptotic signaling in neurons by induced hdac3 expression |
topic | Glaucoma |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375002/ https://www.ncbi.nlm.nih.gov/pubmed/34398198 http://dx.doi.org/10.1167/iovs.62.10.14 |
work_keys_str_mv | AT schmittheatherm increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT fehrmanrachell increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT maesmargarete increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT yanghuan increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT guolianwang increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT schlampcassandral increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT pelzelheatherr increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression AT nickellsrobertw increasedsusceptibilityandintrinsicapoptoticsignalinginneuronsbyinducedhdac3expression |