Cargando…
Estimating the Severity of Visual Field Damage From Retinal Nerve Fiber Layer Thickness Measurements With Artificial Intelligence
PURPOSE: The purpose of this study was to assess the accuracy of artificial neural networks (ANN) in estimating the severity of mean deviation (MD) from peripapillary retinal nerve fiber layer (RNFL) thickness measurements derived from optical coherence tomography (OCT). METHODS: Models were trained...
Autores principales: | Huang, Xiaoqin, Sun, Jian, Majoor, Juleke, Vermeer, Koenraad Arndt, Lemij, Hans, Elze, Tobias, Wang, Mengyu, Boland, Michael Vincent, Pasquale, Louis Robert, Mohammadzadeh, Vahid, Nouri-Mahdavi, Kouros, Johnson, Chris, Yousefi, Siamak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375007/ https://www.ncbi.nlm.nih.gov/pubmed/34398225 http://dx.doi.org/10.1167/tvst.10.9.16 |
Ejemplares similares
-
An Artificial Intelligence Enabled System for Retinal Nerve Fiber Layer Thickness Damage Severity Staging
por: Yousefi, Siamak, et al.
Publicado: (2023) -
Contrast-to-Noise Ratios to Evaluate the Detection of Glaucomatous Progression in the Superior and Inferior Hemiretina
por: Majoor, Juleke E. A., et al.
Publicado: (2022) -
Contrast-to-Noise Ratios for Assessing the Detection of Progression in the Various Stages of Glaucoma
por: Majoor, Juleke E. A., et al.
Publicado: (2019) -
An Artificial Intelligence Approach to Assess Spatial Patterns of Retinal Nerve Fiber Layer Thickness Maps in Glaucoma
por: Wang, Mengyu, et al.
Publicado: (2020) -
Pointwise and Region-Wise Course of Visual Field Loss in Patients With Glaucoma
por: Sabouri, Samaneh, et al.
Publicado: (2022)