Cargando…
Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children
Attention-deficit hyperactivity disorder (ADHD) seriously affects children’s health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using Acinetobacter johnsoni...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375032/ https://www.ncbi.nlm.nih.gov/pubmed/34421854 http://dx.doi.org/10.3389/fmicb.2021.700707 |
_version_ | 1783740240049995776 |
---|---|
author | Zhou, Guoling Yu, Rongrong Ahmed, Temoor Jiang, Hubiao Zhang, Muchen Lv, Luqiong Alhumaydhi, Fahad A. Allemailem, Khaled S. Li, Bin |
author_facet | Zhou, Guoling Yu, Rongrong Ahmed, Temoor Jiang, Hubiao Zhang, Muchen Lv, Luqiong Alhumaydhi, Fahad A. Allemailem, Khaled S. Li, Bin |
author_sort | Zhou, Guoling |
collection | PubMed |
description | Attention-deficit hyperactivity disorder (ADHD) seriously affects children’s health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using Acinetobacter johnsonii strain RTN1, followed by their characterization through state-of-the-art material characterization techniques, viz., UV–vis spectroscopy, Fourier transform infrared spectroscopy, and transmission and scanning electron microscopic analyses with energy dispersive spectrometry. Moreover, we investigated and compared the population composition of gut microbiota and their susceptibility to biogenic ZnONPs between healthy and ADHD children based on the traditional plate method and 16S rRNA amplicon sequence analysis. The antibacterial effect of ZnONPs against gut bacteria was also determined by measurement of live cell number, living/dead bacterial staining test, and flow cytometry observation. The present study revealed that the number of live gut bacteria in healthy children was more than 10-fold higher than that in ADHD children; however, the community structure of gut bacteria has changed, while greater diversity was found in gut bacteria from ADHD children. In addition, we found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONPs, which shows an increased and reduced effect in composition of gut bacteria from healthy and ADHD children, respectively. It was also noted that the main mechanism of ZnONPs may be to inhibit the growth of gut bacteria rather than to kill them, while the nanoparticle-resistant strains in healthy children is also different from that in ADHD children. Some representative bacteria, in particular nanoparticle-resistant bacteria, were successfully isolated and identified. Overall, this study revealed the potential correlation of ADHD with gut bacteria and provided a new possibility to prevent ADHD by the combination of nanoparticle and its resistant bacteria. |
format | Online Article Text |
id | pubmed-8375032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83750322021-08-20 Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children Zhou, Guoling Yu, Rongrong Ahmed, Temoor Jiang, Hubiao Zhang, Muchen Lv, Luqiong Alhumaydhi, Fahad A. Allemailem, Khaled S. Li, Bin Front Microbiol Microbiology Attention-deficit hyperactivity disorder (ADHD) seriously affects children’s health, and the gut microbiome has been widely hypothesized to play a role in the regulation of ADHD behavior. The present study aims to the biosynthesize of zinc oxide nanoparticles (ZnONPs) by using Acinetobacter johnsonii strain RTN1, followed by their characterization through state-of-the-art material characterization techniques, viz., UV–vis spectroscopy, Fourier transform infrared spectroscopy, and transmission and scanning electron microscopic analyses with energy dispersive spectrometry. Moreover, we investigated and compared the population composition of gut microbiota and their susceptibility to biogenic ZnONPs between healthy and ADHD children based on the traditional plate method and 16S rRNA amplicon sequence analysis. The antibacterial effect of ZnONPs against gut bacteria was also determined by measurement of live cell number, living/dead bacterial staining test, and flow cytometry observation. The present study revealed that the number of live gut bacteria in healthy children was more than 10-fold higher than that in ADHD children; however, the community structure of gut bacteria has changed, while greater diversity was found in gut bacteria from ADHD children. In addition, we found that the number of live gut bacteria in healthy and ADHD children was reduced by ZnONPs, which shows an increased and reduced effect in composition of gut bacteria from healthy and ADHD children, respectively. It was also noted that the main mechanism of ZnONPs may be to inhibit the growth of gut bacteria rather than to kill them, while the nanoparticle-resistant strains in healthy children is also different from that in ADHD children. Some representative bacteria, in particular nanoparticle-resistant bacteria, were successfully isolated and identified. Overall, this study revealed the potential correlation of ADHD with gut bacteria and provided a new possibility to prevent ADHD by the combination of nanoparticle and its resistant bacteria. Frontiers Media S.A. 2021-08-05 /pmc/articles/PMC8375032/ /pubmed/34421854 http://dx.doi.org/10.3389/fmicb.2021.700707 Text en Copyright © 2021 Zhou, Yu, Ahmed, Jiang, Zhang, Lv, Alhumaydhi, Allemailem and Li. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Zhou, Guoling Yu, Rongrong Ahmed, Temoor Jiang, Hubiao Zhang, Muchen Lv, Luqiong Alhumaydhi, Fahad A. Allemailem, Khaled S. Li, Bin Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children |
title | Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children |
title_full | Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children |
title_fullStr | Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children |
title_full_unstemmed | Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children |
title_short | Biosynthesis and Characterization of Zinc Oxide Nanoparticles and Their Impact on the Composition of Gut Microbiota in Healthy and Attention-Deficit Hyperactivity Disorder Children |
title_sort | biosynthesis and characterization of zinc oxide nanoparticles and their impact on the composition of gut microbiota in healthy and attention-deficit hyperactivity disorder children |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375032/ https://www.ncbi.nlm.nih.gov/pubmed/34421854 http://dx.doi.org/10.3389/fmicb.2021.700707 |
work_keys_str_mv | AT zhouguoling biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT yurongrong biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT ahmedtemoor biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT jianghubiao biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT zhangmuchen biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT lvluqiong biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT alhumaydhifahada biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT allemailemkhaleds biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren AT libin biosynthesisandcharacterizationofzincoxidenanoparticlesandtheirimpactonthecompositionofgutmicrobiotainhealthyandattentiondeficithyperactivitydisorderchildren |