Cargando…

Using single-cell sequencing technology to detect circulating tumor cells in solid tumors

Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find t...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jiasheng, Liao, Kaili, Yang, Xi, Wu, Chengfeng, Wu, Wei, Han, Shuwen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375060/
https://www.ncbi.nlm.nih.gov/pubmed/34412644
http://dx.doi.org/10.1186/s12943-021-01392-w
Descripción
Sumario:Circulating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.