Cargando…
LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia
BACKGROUND: With recent advances in microscopy, recordings of cell behaviour can result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells at high speed and high 3D resolution, accumulating data at 100 frames/second over hours, presenting a major challenge for interrog...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375126/ https://www.ncbi.nlm.nih.gov/pubmed/34412593 http://dx.doi.org/10.1186/s12859-021-04324-z |
_version_ | 1783740257874739200 |
---|---|
author | Lefevre, James G. Koh, Yvette W. H. Wall, Adam A. Condon, Nicholas D. Stow, Jennifer L. Hamilton, Nicholas A. |
author_facet | Lefevre, James G. Koh, Yvette W. H. Wall, Adam A. Condon, Nicholas D. Stow, Jennifer L. Hamilton, Nicholas A. |
author_sort | Lefevre, James G. |
collection | PubMed |
description | BACKGROUND: With recent advances in microscopy, recordings of cell behaviour can result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells at high speed and high 3D resolution, accumulating data at 100 frames/second over hours, presenting a major challenge for interrogating these datasets. The surfaces of vertebrate cells can rapidly deform to create projections that interact with the microenvironment. Such surface projections include spike-like filopodia and wave-like ruffles on the surface of macrophages as they engage in immune surveillance. LLSM imaging has provided new insights into the complex surface behaviours of immune cells, including revealing new types of ruffles. However, full use of these data requires systematic and quantitative analysis of thousands of projections over hundreds of time steps, and an effective system for analysis of individual structures at this scale requires efficient and robust methods with minimal user intervention. RESULTS: We present LLAMA, a platform to enable systematic analysis of terabyte-scale 4D microscopy datasets. We use a machine learning method for semantic segmentation, followed by a robust and configurable object separation and tracking algorithm, generating detailed object level statistics. Our system is designed to run on high-performance computing to achieve high throughput, with outputs suitable for visualisation and statistical analysis. Advanced visualisation is a key element of LLAMA: we provide a specialised tool which supports interactive quality control, optimisation, and output visualisation processes to complement the processing pipeline. LLAMA is demonstrated in an analysis of macrophage surface projections, in which it is used to i) discriminate ruffles induced by lipopolysaccharide (LPS) and macrophage colony stimulating factor (CSF-1) and ii) determine the autonomy of ruffle morphologies. CONCLUSIONS: LLAMA provides an effective open source tool for running a cell microscopy analysis pipeline based on semantic segmentation, object analysis and tracking. Detailed numerical and visual outputs enable effective statistical analysis, identifying distinct patterns of increased activity under the two interventions considered in our example analysis. Our system provides the capacity to screen large datasets for specific structural configurations. LLAMA identified distinct features of LPS and CSF-1 induced ruffles and it identified a continuity of behaviour between tent pole ruffling, wave-like ruffling and filopodia deployment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04324-z. |
format | Online Article Text |
id | pubmed-8375126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-83751262021-08-19 LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia Lefevre, James G. Koh, Yvette W. H. Wall, Adam A. Condon, Nicholas D. Stow, Jennifer L. Hamilton, Nicholas A. BMC Bioinformatics Software BACKGROUND: With recent advances in microscopy, recordings of cell behaviour can result in terabyte-size datasets. The lattice light sheet microscope (LLSM) images cells at high speed and high 3D resolution, accumulating data at 100 frames/second over hours, presenting a major challenge for interrogating these datasets. The surfaces of vertebrate cells can rapidly deform to create projections that interact with the microenvironment. Such surface projections include spike-like filopodia and wave-like ruffles on the surface of macrophages as they engage in immune surveillance. LLSM imaging has provided new insights into the complex surface behaviours of immune cells, including revealing new types of ruffles. However, full use of these data requires systematic and quantitative analysis of thousands of projections over hundreds of time steps, and an effective system for analysis of individual structures at this scale requires efficient and robust methods with minimal user intervention. RESULTS: We present LLAMA, a platform to enable systematic analysis of terabyte-scale 4D microscopy datasets. We use a machine learning method for semantic segmentation, followed by a robust and configurable object separation and tracking algorithm, generating detailed object level statistics. Our system is designed to run on high-performance computing to achieve high throughput, with outputs suitable for visualisation and statistical analysis. Advanced visualisation is a key element of LLAMA: we provide a specialised tool which supports interactive quality control, optimisation, and output visualisation processes to complement the processing pipeline. LLAMA is demonstrated in an analysis of macrophage surface projections, in which it is used to i) discriminate ruffles induced by lipopolysaccharide (LPS) and macrophage colony stimulating factor (CSF-1) and ii) determine the autonomy of ruffle morphologies. CONCLUSIONS: LLAMA provides an effective open source tool for running a cell microscopy analysis pipeline based on semantic segmentation, object analysis and tracking. Detailed numerical and visual outputs enable effective statistical analysis, identifying distinct patterns of increased activity under the two interventions considered in our example analysis. Our system provides the capacity to screen large datasets for specific structural configurations. LLAMA identified distinct features of LPS and CSF-1 induced ruffles and it identified a continuity of behaviour between tent pole ruffling, wave-like ruffling and filopodia deployment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04324-z. BioMed Central 2021-08-19 /pmc/articles/PMC8375126/ /pubmed/34412593 http://dx.doi.org/10.1186/s12859-021-04324-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Software Lefevre, James G. Koh, Yvette W. H. Wall, Adam A. Condon, Nicholas D. Stow, Jennifer L. Hamilton, Nicholas A. LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia |
title | LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia |
title_full | LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia |
title_fullStr | LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia |
title_full_unstemmed | LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia |
title_short | LLAMA: a robust and scalable machine learning pipeline for analysis of large scale 4D microscopy data: analysis of cell ruffles and filopodia |
title_sort | llama: a robust and scalable machine learning pipeline for analysis of large scale 4d microscopy data: analysis of cell ruffles and filopodia |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375126/ https://www.ncbi.nlm.nih.gov/pubmed/34412593 http://dx.doi.org/10.1186/s12859-021-04324-z |
work_keys_str_mv | AT lefevrejamesg llamaarobustandscalablemachinelearningpipelineforanalysisoflargescale4dmicroscopydataanalysisofcellrufflesandfilopodia AT kohyvettewh llamaarobustandscalablemachinelearningpipelineforanalysisoflargescale4dmicroscopydataanalysisofcellrufflesandfilopodia AT walladama llamaarobustandscalablemachinelearningpipelineforanalysisoflargescale4dmicroscopydataanalysisofcellrufflesandfilopodia AT condonnicholasd llamaarobustandscalablemachinelearningpipelineforanalysisoflargescale4dmicroscopydataanalysisofcellrufflesandfilopodia AT stowjenniferl llamaarobustandscalablemachinelearningpipelineforanalysisoflargescale4dmicroscopydataanalysisofcellrufflesandfilopodia AT hamiltonnicholasa llamaarobustandscalablemachinelearningpipelineforanalysisoflargescale4dmicroscopydataanalysisofcellrufflesandfilopodia |