Cargando…
Probabilistic Random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty
Measurements of protein–ligand interactions have reproducibility limits due to experimental errors. Any model based on such assays will consequentially have such unavoidable errors influencing their performance which should ideally be factored into modelling and output predictions, such as the actua...
Autores principales: | Mervin, Lewis H., Trapotsi, Maria-Anna, Afzal, Avid M., Barrett, Ian P., Bender, Andreas, Engkvist, Ola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375213/ https://www.ncbi.nlm.nih.gov/pubmed/34412708 http://dx.doi.org/10.1186/s13321-021-00539-7 |
Ejemplares similares
-
Target prediction utilising negative bioactivity data covering large chemical space
por: Mervin, Lewis H., et al.
Publicado: (2015) -
Extending in Silico Protein Target Prediction Models to Include Functional Effects
por: Mervin, Lewis H., et al.
Publicado: (2018) -
Orthologue chemical space and its influence on target prediction
por: Mervin, Lewis H, et al.
Publicado: (2018) -
A multi-label approach to target prediction taking ligand promiscuity into account
por: Afzal, Avid M, et al.
Publicado: (2015) -
Cell Morphological Profiling Enables High-Throughput
Screening for PROteolysis TArgeting Chimera (PROTAC) Phenotypic Signature
por: Trapotsi, Maria-Anna, et al.
Publicado: (2022)