Cargando…
Human iPSC lines from a Christianson syndrome patient with NHE6 W523X mutation, a biologically-related control, and CRISPR/Cas9 gene-corrected isogenic controls
Loss-of-function mutations in Na+/H + exchanger 6 (NHE6) (also termed SLC9A6) cause the X-linked neurogenetic disorder Christianson syndrome (CS). Using peripheral blood mononuclear cells, we developed induced pluripotent stem cell (iPSC) lines from a patient with the NHE6 nonsense mutation c.1569G...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375322/ https://www.ncbi.nlm.nih.gov/pubmed/34182254 http://dx.doi.org/10.1016/j.scr.2021.102435 |
Sumario: | Loss-of-function mutations in Na+/H + exchanger 6 (NHE6) (also termed SLC9A6) cause the X-linked neurogenetic disorder Christianson syndrome (CS). Using peripheral blood mononuclear cells, we developed induced pluripotent stem cell (iPSC) lines from a patient with the NHE6 nonsense mutation c.1569G > A (p. (W523X)) and diagnosed with CS and from a biologically-related control. Using CRISPR/Cas9 gene editing, we generated two isogenic control lines in which the c.1569G > A mutation was corrected. All lines were verified by DNA sequencing and for NHE6 protein expression, pluripotency, and differentiation potential. These lines will serve as a valuable resource for both basic and translational studies in CS. |
---|