Cargando…

Influence of Inter-Radicular Septal Bone Quantity in Primary Stability of Immediate Molar Implants with Different Length and Diameter Placed in Mandibular Region. A Cone-Beam Computed Tomography-Based Simulated Implant Study

AIM: The purpose of this in vitro study was to investigate the influence of length and width of implant on primary stability in immediate implants in mandibular first molar. MATERIALS AND METHODS: The study was carried out on 40 cone-beam computed tomography scans selected with defined inclusion and...

Descripción completa

Detalles Bibliográficos
Autores principales: Sayed, Arshad Jamal, Shaikh, Safia Shoeb, Shaikh, Shoeb Yakub, Hussain, Mohammed Abid, Tareen, Sabahat Ullah Khan, Awinashe, Vaibhav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375907/
https://www.ncbi.nlm.nih.gov/pubmed/34447139
http://dx.doi.org/10.4103/jpbs.JPBS_818_20
Descripción
Sumario:AIM: The purpose of this in vitro study was to investigate the influence of length and width of implant on primary stability in immediate implants in mandibular first molar. MATERIALS AND METHODS: The study was carried out on 40 cone-beam computed tomography scans selected with defined inclusion and exclusion criteria. According to the diameter and length of implants, they were divided into nine groups (G1 to G9). The virtual implants of different diameters and length were placed in mandibular first molar and measurements were done for peri-implant horizontal and vertical gap defect, peri-implant interradicular bone support and apical bone support for all the groups. RESULTS: The study groups Diameter, (D-7 mm) showed least horizontal gap defect (Buccal-1.30 ± 0.56 mm, lingual-1.30 ± 0.56 mm, mesial-1.20 ± 0.51 mm, and distal-1.05 ± 0.59 mm) as compared to regular implant diameter (D-4.7) groups (Buccal-2.35 ± 0.483 mm, lingual-2.10 mm ± 0.44 mm, mesial-2.30 ± 0.64 mm, and distal-2.25 ± 0.43 mm). The unsupported Vertical implant gap defect at the coronal part of the socket was 2.80 mm ± 0.83 mm for all groups in both horizontal and vertical direction. The vertical peri-implant interradicular bone support showed increased bone support with increase in implant length (L). The buccal and lingual inter-radicular bone-support was least for Length (L-8.5 mm), moderate for L-11.5 mm, and highest for L-13.5 mm groups, respectively. The mesial inter-radicular bone support was least for G4G7, moderate for G1G2G5G8, and maximum for G3G6G9 groups. Similarly, the distal inter-radicular bone support was least for G4G7, moderate for G1G5G8, and maximum for G2G3G6G9 groups, respectively. There was no apical bone support in L-8.5 mm group as the tip of implant was 3.5–4 mm within the socket tip. Whereas, L-11.5 mm had decent (0.9–1 mm) and L-13.5 mm had Good (1.35–1.95 mm) apical bone support as the implant tip was beyond the socket tip. CONCLUSION: All the groups showed good interradicular bone support on buccal and lingual surfaces. Regular width implants with longer length showed satisfactory interradicular bone support on mesial and distal surfaces. Longer implants showed good apical bone support in all the four surfaces and hence good apical primary stability expected.