Cargando…
Efficient, high-performance semantic segmentation using multi-scale feature extraction
The success of deep learning in recent years has arguably been driven by the availability of large datasets for training powerful predictive algorithms. In medical applications however, the sensitive nature of the data limits the collection and exchange of large-scale datasets. Privacy-preserving an...
Autores principales: | Knolle, Moritz, Kaissis, Georgios, Jungmann, Friederike, Ziegelmayer, Sebastian, Sasse, Daniel, Makowski, Marcus, Rueckert, Daniel, Braren, Rickmer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375977/ https://www.ncbi.nlm.nih.gov/pubmed/34411138 http://dx.doi.org/10.1371/journal.pone.0255397 |
Ejemplares similares
-
Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus Autoimmune Pancreatitis (AIP)
por: Ziegelmayer, Sebastian, et al.
Publicado: (2020) -
Algorithmic transparency and interpretability measures improve radiologists’ performance in BI-RADS 4 classification
por: Jungmann, Friederike, et al.
Publicado: (2022) -
Medical imaging deep learning with differential privacy
por: Ziller, Alexander, et al.
Publicado: (2021) -
Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma
por: Kaissis, Georgios A., et al.
Publicado: (2020) -
Privacy: An Axiomatic Approach
por: Ziller, Alexander, et al.
Publicado: (2022)