Cargando…
A machine learning approach to predict extreme inactivity in COPD patients using non-activity-related clinical data
Facilitating the identification of extreme inactivity (EI) has the potential to improve morbidity and mortality in COPD patients. Apart from patients with obvious EI, the identification of a such behavior during a real-life consultation is unreliable. We therefore describe a machine learning algorit...
Autores principales: | Aguilaniu, Bernard, Hess, David, Kelkel, Eric, Briault, Amandine, Destors, Marie, Boutros, Jacques, Zhi Li, Pei, Antoniadis, Anestis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376055/ https://www.ncbi.nlm.nih.gov/pubmed/34411121 http://dx.doi.org/10.1371/journal.pone.0255977 |
Ejemplares similares
-
Are there specific clinical characteristics associated with physician’s treatment choices in COPD?
por: Roche, Nicolas, et al.
Publicado: (2019) -
Minimal clinically important difference of 3-minute chair rise test and the DIRECT questionnaire after pulmonary rehabilitation in COPD patients
por: Lévesque, Jonathan, et al.
Publicado: (2019) -
The difficulties of measuring and improving physical activity in COPD
por: Aguilaniu, Bernard, et al.
Publicado: (2014) -
Impact of bronchodilator therapy on exercise tolerance in COPD
por: Aguilaniu, B
Publicado: (2010) -
Physical inactivity and arterial stiffness in COPD
por: Sievi, Noriane A, et al.
Publicado: (2015)