Cargando…
Discovering differential genome sequence activity with interpretable and efficient deep learning
Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376110/ https://www.ncbi.nlm.nih.gov/pubmed/34370721 http://dx.doi.org/10.1371/journal.pcbi.1009282 |
_version_ | 1783740438714253312 |
---|---|
author | Hammelman, Jennifer Gifford, David K. |
author_facet | Hammelman, Jennifer Gifford, David K. |
author_sort | Hammelman, Jennifer |
collection | PubMed |
description | Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpret genome regulatory sequences for cell type-specific or condition specific patterns. We show that these methods identify relevant transcription factor motifs and spacings that are predictive of cell state-specific chromatin accessibility. Finally, we integrate these methods into framework that is readily accessible to non-experts and available for download as a binary or installed via PyPI or bioconda at https://cgs.csail.mit.edu/deepaccess-package/. |
format | Online Article Text |
id | pubmed-8376110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-83761102021-08-20 Discovering differential genome sequence activity with interpretable and efficient deep learning Hammelman, Jennifer Gifford, David K. PLoS Comput Biol Research Article Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpret genome regulatory sequences for cell type-specific or condition specific patterns. We show that these methods identify relevant transcription factor motifs and spacings that are predictive of cell state-specific chromatin accessibility. Finally, we integrate these methods into framework that is readily accessible to non-experts and available for download as a binary or installed via PyPI or bioconda at https://cgs.csail.mit.edu/deepaccess-package/. Public Library of Science 2021-08-09 /pmc/articles/PMC8376110/ /pubmed/34370721 http://dx.doi.org/10.1371/journal.pcbi.1009282 Text en © 2021 Hammelman, Gifford https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hammelman, Jennifer Gifford, David K. Discovering differential genome sequence activity with interpretable and efficient deep learning |
title | Discovering differential genome sequence activity with interpretable and efficient deep learning |
title_full | Discovering differential genome sequence activity with interpretable and efficient deep learning |
title_fullStr | Discovering differential genome sequence activity with interpretable and efficient deep learning |
title_full_unstemmed | Discovering differential genome sequence activity with interpretable and efficient deep learning |
title_short | Discovering differential genome sequence activity with interpretable and efficient deep learning |
title_sort | discovering differential genome sequence activity with interpretable and efficient deep learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376110/ https://www.ncbi.nlm.nih.gov/pubmed/34370721 http://dx.doi.org/10.1371/journal.pcbi.1009282 |
work_keys_str_mv | AT hammelmanjennifer discoveringdifferentialgenomesequenceactivitywithinterpretableandefficientdeeplearning AT gifforddavidk discoveringdifferentialgenomesequenceactivitywithinterpretableandefficientdeeplearning |