Cargando…
A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation
YH12852, a novel, highly selective 5‐hydroxytryptamine 4 (5‐HT(4)) receptor agonist, is currently under development to treat patients with functional constipation. In this study, we aimed to develop a pharmacokinetic (PK)–pharmacodynamic (PD) model that adequately described the time courses of the p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376136/ https://www.ncbi.nlm.nih.gov/pubmed/34085769 http://dx.doi.org/10.1002/psp4.12664 |
_version_ | 1783740444273803264 |
---|---|
author | Kim, Siun Lee, Hyun A. Jang, Seong Bok Lee, Howard |
author_facet | Kim, Siun Lee, Hyun A. Jang, Seong Bok Lee, Howard |
author_sort | Kim, Siun |
collection | PubMed |
description | YH12852, a novel, highly selective 5‐hydroxytryptamine 4 (5‐HT(4)) receptor agonist, is currently under development to treat patients with functional constipation. In this study, we aimed to develop a pharmacokinetic (PK)–pharmacodynamic (PD) model that adequately described the time courses of the plasma concentrations of YH12852 and its prokinetic effect as assessed by the Gastric Emptying Breath Test (GEBT) and to predict the prokinetic effect of YH12852 at higher doses through PD simulation. We used the plasma concentrations of YH12852 from patients with functional constipation and healthy subjects and the GEBT results from healthy subjects obtained from a phase I/IIa trial. The PK‐PD modeling and covariate analysis were performed using NONMEM software. The prokinetic effect of YH12852 was described using a semimechanistic multicompartment PD model and an empirical model by Ghoos et al. A two‐compartment model with first‐order absorption adequately described the observed concentration‐time profiles of YH12852. The semimechanistic multicompartment PD model and the revised Ghoos model with two slope parameters adequately described the observed kPCD(t) (the percent dose of (13)C excreted in the exhaled air at minute t after completing the test meal, multiplied by 1000) values. YH12852 accelerated gastric emptying even at low doses of 0.05–0.1 mg, and its prokinetic effect was greater in subjects suffering from more severe functional constipation. The PD simulation experiments revealed that the change from baseline in the half time for gastric emptying induced by YH12852 increased in a dose‐dependent manner at 0.05–5 mg although the results at doses >0.1 mg were extrapolated. We also showed that the empirical Ghoos model is a special case of the general semimechanistic multicompartment PD model for gastric emptying. |
format | Online Article Text |
id | pubmed-8376136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83761362021-08-26 A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation Kim, Siun Lee, Hyun A. Jang, Seong Bok Lee, Howard CPT Pharmacometrics Syst Pharmacol Research YH12852, a novel, highly selective 5‐hydroxytryptamine 4 (5‐HT(4)) receptor agonist, is currently under development to treat patients with functional constipation. In this study, we aimed to develop a pharmacokinetic (PK)–pharmacodynamic (PD) model that adequately described the time courses of the plasma concentrations of YH12852 and its prokinetic effect as assessed by the Gastric Emptying Breath Test (GEBT) and to predict the prokinetic effect of YH12852 at higher doses through PD simulation. We used the plasma concentrations of YH12852 from patients with functional constipation and healthy subjects and the GEBT results from healthy subjects obtained from a phase I/IIa trial. The PK‐PD modeling and covariate analysis were performed using NONMEM software. The prokinetic effect of YH12852 was described using a semimechanistic multicompartment PD model and an empirical model by Ghoos et al. A two‐compartment model with first‐order absorption adequately described the observed concentration‐time profiles of YH12852. The semimechanistic multicompartment PD model and the revised Ghoos model with two slope parameters adequately described the observed kPCD(t) (the percent dose of (13)C excreted in the exhaled air at minute t after completing the test meal, multiplied by 1000) values. YH12852 accelerated gastric emptying even at low doses of 0.05–0.1 mg, and its prokinetic effect was greater in subjects suffering from more severe functional constipation. The PD simulation experiments revealed that the change from baseline in the half time for gastric emptying induced by YH12852 increased in a dose‐dependent manner at 0.05–5 mg although the results at doses >0.1 mg were extrapolated. We also showed that the empirical Ghoos model is a special case of the general semimechanistic multicompartment PD model for gastric emptying. John Wiley and Sons Inc. 2021-07-03 2021-08 /pmc/articles/PMC8376136/ /pubmed/34085769 http://dx.doi.org/10.1002/psp4.12664 Text en © 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of the American Society for Clinical Pharmacology and Therapeutics. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Kim, Siun Lee, Hyun A. Jang, Seong Bok Lee, Howard A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
title | A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
title_full | A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
title_fullStr | A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
title_full_unstemmed | A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
title_short | A population pharmacokinetic‐pharmacodynamic model of YH12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
title_sort | population pharmacokinetic‐pharmacodynamic model of yh12852, a highly selective 5‐hydroxytryptamine 4 receptor agonist, in healthy subjects and patients with functional constipation |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376136/ https://www.ncbi.nlm.nih.gov/pubmed/34085769 http://dx.doi.org/10.1002/psp4.12664 |
work_keys_str_mv | AT kimsiun apopulationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT leehyuna apopulationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT jangseongbok apopulationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT leehoward apopulationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT kimsiun populationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT leehyuna populationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT jangseongbok populationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation AT leehoward populationpharmacokineticpharmacodynamicmodelofyh12852ahighlyselective5hydroxytryptamine4receptoragonistinhealthysubjectsandpatientswithfunctionalconstipation |