Cargando…
Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring
One of the important tasks in the operating room is monitoring the depth of anesthesia (DoA) during surgery, and noninvasive techniques are very popular. Hence, we propose a new scheme for DoA monitoring considering the time-frequency analysis of electroencephalography (EEG) signals and GLCM feature...
Autores principales: | Mousavi, Seyed Mortaza, Asgharzadeh-Bonab, Akbar, Ranjbarzadeh, Ramin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376433/ https://www.ncbi.nlm.nih.gov/pubmed/34422035 http://dx.doi.org/10.1155/2021/8430565 |
Ejemplares similares
-
Distinguishing Parkinson’s Disease with GLCM Features from the Hankelization of EEG Signals
por: Karakaş, Mehmet Fatih, et al.
Publicado: (2023) -
A Wavelet Transform Based Method to Determine Depth of Anesthesia to Prevent Awareness during General Anesthesia
por: Mousavi, Seyed Mortaza, et al.
Publicado: (2014) -
Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia
por: Gu, Yue, et al.
Publicado: (2019) -
Accuracy of Combined EEG Parameters in Prediction the Depth of Anesthesia
por: Arefian, Nourmohammad, et al.
Publicado: (2012) -
Automatic detection of COVID-19 using pruned GLCM-Based texture features and LDCRF classification
por: Bakheet, Samy, et al.
Publicado: (2021)