Cargando…
Heterogeneous graph attention networks for drug virus association prediction
Coronavirus Disease-19 (COVID-19) has lead global epidemics with high morbidity and mortality. However, there are currently no proven effective drugs targeting COVID-19. Identifying drug-virus associations can not only provide insights into the understanding of drug-virus interaction mechanism, but...
Autores principales: | Long, Yahui, Zhang, Yu, Wu, Min, Peng, Shaoliang, Kwoh, Chee Keong, Luo, Jiawei, Li, Xiaoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376526/ https://www.ncbi.nlm.nih.gov/pubmed/34419588 http://dx.doi.org/10.1016/j.ymeth.2021.08.003 |
Ejemplares similares
-
WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network
por: Long, Yahui, et al.
Publicado: (2019) -
Class similarity network for coding and long non-coding RNA classification
por: Zhang, Yu, et al.
Publicado: (2021) -
Deep learning based DNA:RNA triplex forming potential prediction
por: Zhang, Yu, et al.
Publicado: (2020) -
An end-to-end heterogeneous graph attention network for Mycobacterium tuberculosis drug-resistance prediction
por: Yang, Yang, et al.
Publicado: (2021) -
MDGNN: Microbial Drug Prediction Based on Heterogeneous Multi-Attention Graph Neural Network
por: Pi, Jiangsheng, et al.
Publicado: (2022)