Cargando…
Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation
PURPOSE: To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based structural connectome matrices calculated from diffusi...
Autores principales: | Yasaka, Koichiro, Kamagata, Koji, Ogawa, Takashi, Hatano, Taku, Takeshige-Amano, Haruka, Ogaki, Kotaro, Andica, Christina, Akai, Hiroyuki, Kunimatsu, Akira, Uchida, Wataru, Hattori, Nobutaka, Aoki, Shigeki, Abe, Osamu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376710/ https://www.ncbi.nlm.nih.gov/pubmed/33481071 http://dx.doi.org/10.1007/s00234-021-02648-4 |
Ejemplares similares
-
Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI
por: Le Berre, Alice, et al.
Publicado: (2019) -
Scan–rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics
por: Andica, Christina, et al.
Publicado: (2019) -
Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion Encoding
por: Kamiya, Kouhei, et al.
Publicado: (2020) -
Advanced diffusion magnetic resonance imaging in patients with Alzheimer's and Parkinson's diseases
por: Kamagata, Koji, et al.
Publicado: (2020) -
MR Biomarkers of Degenerative Brain Disorders Derived From Diffusion Imaging
por: Andica, Christina, et al.
Publicado: (2019)