Cargando…
Evaluation of the feasibility of explainable computer-aided detection of cardiomegaly on chest radiographs using deep learning
We examined the feasibility of explainable computer-aided detection of cardiomegaly in routine clinical practice using segmentation-based methods. Overall, 793 retrospectively acquired posterior–anterior (PA) chest X-ray images (CXRs) of 793 patients were used to train deep learning (DL) models for...
Autores principales: | Lee, Mu Sook, Kim, Yong Soo, Kim, Minki, Usman, Muhammad, Byon, Shi Sub, Kim, Sung Hyun, Lee, Byoung Il, Lee, Byoung-Dai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376868/ https://www.ncbi.nlm.nih.gov/pubmed/34413405 http://dx.doi.org/10.1038/s41598-021-96433-1 |
Ejemplares similares
-
Observer performance evaluation of the feasibility of a deep learning
model to detect cardiomegaly on chest radiographs
por: Ajmera, Pranav, et al.
Publicado: (2022) -
Automatic Lung Segmentation on Chest X-rays Using Self-Attention Deep Neural Network
por: Kim, Minki, et al.
Publicado: (2021) -
Correlation Between Anemia (Hemoglobin Level) and Cardiomegaly Based On Chest Radiograph and Echocardiography
por: Amelia, Putri, et al.
Publicado: (2023) -
A deep learning approach for fully automated measurements of lower extremity alignment in radiographic images
por: Moon, Ki-Ryum, et al.
Publicado: (2023) -
Unsupervised anomaly detection for posteroanterior chest X-rays using multiresolution patch-based self-supervised learning
por: Kim, Minki, et al.
Publicado: (2023)