Cargando…
Machine learning approach to dynamic risk modeling of mortality in COVID-19: a UK Biobank study
The COVID-19 pandemic has created an urgent need for robust, scalable monitoring tools supporting stratification of high-risk patients. This research aims to develop and validate prediction models, using the UK Biobank, to estimate COVID-19 mortality risk in confirmed cases. From the 11,245 particip...
Autores principales: | Dabbah, Mohammad A., Reed, Angus B., Booth, Adam T. C., Yassaee, Arrash, Despotovic, Aleksa, Klasmer, Benjamin, Binning, Emily, Aral, Mert, Plans, David, Morelli, Davide, Labrique, Alain B., Mohan, Diwakar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376891/ https://www.ncbi.nlm.nih.gov/pubmed/34413324 http://dx.doi.org/10.1038/s41598-021-95136-x |
Ejemplares similares
-
Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis
por: Booth, Adam, et al.
Publicado: (2021) -
Development of an accessible 10-year Digital CArdioVAscular (DiCAVA) risk assessment: a UK Biobank study
por: Dolezalova, Nikola, et al.
Publicado: (2021) -
Accelerometer-derived sleep onset timing and cardiovascular disease incidence: a UK Biobank cohort study
por: Nikbakhtian, Shahram, et al.
Publicado: (2021) -
Smartphone movement sensors for the remote monitoring of respiratory
rates: Technical validation
por: Valentine, Sophie, et al.
Publicado: (2022) -
Engagement With mHealth COVID-19 Digital Biomarker Measurements in a Longitudinal Cohort Study: Mixed Methods Evaluation
por: Rennie, Kirsten L, et al.
Publicado: (2023)