Cargando…

Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment

Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data...

Descripción completa

Detalles Bibliográficos
Autores principales: de Sousa, Kauê, van Etten, Jacob, Poland, Jesse, Fadda, Carlo, Jannink, Jean-Luc, Kidane, Yosef Gebrehawaryat, Lakew, Basazen Fantahun, Mengistu, Dejene Kassahun, Pè, Mario Enrico, Solberg, Svein Øivind, Dell’Acqua, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376984/
https://www.ncbi.nlm.nih.gov/pubmed/34413464
http://dx.doi.org/10.1038/s42003-021-02463-w
_version_ 1783740565114847232
author de Sousa, Kauê
van Etten, Jacob
Poland, Jesse
Fadda, Carlo
Jannink, Jean-Luc
Kidane, Yosef Gebrehawaryat
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Pè, Mario Enrico
Solberg, Svein Øivind
Dell’Acqua, Matteo
author_facet de Sousa, Kauê
van Etten, Jacob
Poland, Jesse
Fadda, Carlo
Jannink, Jean-Luc
Kidane, Yosef Gebrehawaryat
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Pè, Mario Enrico
Solberg, Svein Øivind
Dell’Acqua, Matteo
author_sort de Sousa, Kauê
collection PubMed
description Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments.
format Online
Article
Text
id pubmed-8376984
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83769842021-09-22 Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment de Sousa, Kauê van Etten, Jacob Poland, Jesse Fadda, Carlo Jannink, Jean-Luc Kidane, Yosef Gebrehawaryat Lakew, Basazen Fantahun Mengistu, Dejene Kassahun Pè, Mario Enrico Solberg, Svein Øivind Dell’Acqua, Matteo Commun Biol Article Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments. Nature Publishing Group UK 2021-08-19 /pmc/articles/PMC8376984/ /pubmed/34413464 http://dx.doi.org/10.1038/s42003-021-02463-w Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
de Sousa, Kauê
van Etten, Jacob
Poland, Jesse
Fadda, Carlo
Jannink, Jean-Luc
Kidane, Yosef Gebrehawaryat
Lakew, Basazen Fantahun
Mengistu, Dejene Kassahun
Pè, Mario Enrico
Solberg, Svein Øivind
Dell’Acqua, Matteo
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_full Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_fullStr Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_full_unstemmed Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_short Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
title_sort data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376984/
https://www.ncbi.nlm.nih.gov/pubmed/34413464
http://dx.doi.org/10.1038/s42003-021-02463-w
work_keys_str_mv AT desousakaue datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT vanettenjacob datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT polandjesse datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT faddacarlo datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT janninkjeanluc datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT kidaneyosefgebrehawaryat datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT lakewbasazenfantahun datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT mengistudejenekassahun datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT pemarioenrico datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT solbergsveinøivind datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment
AT dellacquamatteo datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment