Cargando…
Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation
Differential cell counts is a challenging task when applying computer vision algorithms to pathology. Existing approaches to train cell recognition require high availability of multi-class segmentation and/or bounding box annotations and suffer in performance when objects are tightly clustered. We p...
Autores principales: | Lee, Sarada M. W., Shaw, Andrew, Simpson, Jodie L., Uminsky, David, Garratt, Luke W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377024/ https://www.ncbi.nlm.nih.gov/pubmed/34413367 http://dx.doi.org/10.1038/s41598-021-96067-3 |
Ejemplares similares
-
Accuracy and efficiency of an artificial intelligence tool when counting breast mitoses
por: Pantanowitz, Liron, et al.
Publicado: (2020) -
Reliance on metrics is a fundamental challenge for AI
por: Thomas, Rachel L., et al.
Publicado: (2022) -
Point-of-care microvolume cytometer measures platelet counts with high accuracy from capillary blood
por: Dickerson, William M., et al.
Publicado: (2021) -
Accuracy of Carbohydrate Counting in Adults
por: Meade, Lisa T., et al.
Publicado: (2016) -
Achieving High Accuracy Prediction of Minimotifs
por: Mi, Tian, et al.
Publicado: (2012)