Cargando…
GTB-PPI: Predict Protein–protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting
Protein–protein interactions (PPIs) are of great importance to understand genetic mechanisms, delineate disease pathogenesis, and guide drug design. With the increase of PPI data and development of machine learning technologies, prediction and identification of PPIs have become a research hotspot in...
Autores principales: | Yu, Bin, Chen, Cheng, Zhou, Hongyan, Liu, Bingqiang, Ma, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377384/ https://www.ncbi.nlm.nih.gov/pubmed/33515750 http://dx.doi.org/10.1016/j.gpb.2021.01.001 |
Ejemplares similares
-
Gradient boosted trees with individual explanations: An alternative to logistic regression for viability prediction in the first trimester of pregnancy
por: Vaulet, Thibaut, et al.
Publicado: (2022) -
GTB – an online genome tolerance browser
por: Shihab, Hashem A., et al.
Publicado: (2017) -
RGBM: regularized gradient boosting machines for identification of the transcriptional regulators of discrete glioma subtypes
por: Mall, Raghvendra, et al.
Publicado: (2018) -
Gradient boosting decision tree becomes more reliable than logistic regression in predicting probability for diabetes with big data
por: Seto, Hiroe, et al.
Publicado: (2022) -
PredRSA: a gradient boosted regression trees approach for predicting protein solvent accessibility
por: Fan, Chao, et al.
Publicado: (2016)